On Termination of Integer Linear Loops

A fundamental problem in program verification concerns the termination of simple linear loops of the form: [EQUATION] where x is a vector of variables, u, a, and c are integer vectors, and A and B are integer matrices. Assuming the matrix A is diagonalisable, we give a decision procedure for the problem of whether, for all initial integer vectors u, such a loop terminates. The correctness of our algorithm relies on sophisticated tools from algebraic and analytic number theory, Diophantine geometry, and real algebraic geometry. To the best of our knowledge, this is the first substantial advance on a 10-year-old open problem of Tiwari [38] and Braverman [8].

[1]  Joël Ouaknine,et al.  The Polyhedron-Hitting Problem , 2014, SODA.

[2]  I. Stewart,et al.  Algebraic Number Theory and Fermat's Last Theorem , 2015 .

[3]  Lily L. Liu Positivity of Three-Term Recurrence Sequences , 2010, Electron. J. Comb..

[4]  Samir Genaim,et al.  On the Termination of Integer Loops , 2012, TOPL.

[5]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[6]  Gisbert Wüstholz,et al.  Logarithmic forms and group varieties. , 1993 .

[7]  Arnaldo Vieira Moura,et al.  Generating Asymptotically Non-Terminating Initial Values for Linear Programs , 2014, ArXiv.

[8]  Andreas Podelski,et al.  A Complete Method for the Synthesis of Linear Ranking Functions , 2004, VMCAI.

[9]  Mark Braverman,et al.  Termination of Integer Linear Programs , 2006, CAV.

[10]  V. Pan Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .

[11]  Richard J. Lipton,et al.  Polynomial-time algorithm for the orbit problem , 1986, JACM.

[12]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[13]  Between Decidability Skolem's Problem - On the Border , 2005 .

[14]  Samir Genaim,et al.  On Multiphase-Linear Ranking Functions , 2017, CAV.

[15]  Amir M. Ben-Amram,et al.  Ranking Functions for Linear-Constraint Loops , 2012, JACM.

[16]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[17]  Stefan Gerhold,et al.  On the positivity set of a linear recurrence sequence , 2007 .

[18]  Henny B. Sipma,et al.  Termination Analysis of Integer Linear Loops , 2005, CONCUR.

[19]  Hans Peter Schlickewei,et al.  The2-adic Thue-Siegel-Roth-Schmidt theorem , 1977 .

[20]  Henny B. Sipma,et al.  Synthesis of Linear Ranking Functions , 2001, TACAS.

[21]  Peter A. Beling,et al.  Polynomial algorithms for linear programming over the algebraic numbers , 1992, STOC '92.

[22]  Anna Philippou,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 2018, Lecture Notes in Computer Science.

[23]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[24]  D. W. Masser New Advances in Transcendence Theory: Linear relations on algebraic groups , 1988 .

[25]  Samir Genaim,et al.  On the linear ranking problem for integer linear-constraint loops , 2012, POPL.

[26]  Andreas Podelski,et al.  Transition invariants , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[27]  Tero Harju,et al.  Positivity of second order linear recurrent sequences , 2006, Discret. Appl. Math..

[28]  Joël Ouaknine,et al.  Positivity Problems for Low-Order Linear Recurrence Sequences , 2013, SODA.

[29]  Supratik Mukhopadhyay,et al.  Termination proofs for linear simple loops , 2013, International Journal on Software Tools for Technology Transfer.

[30]  Igor E. Shparlinski,et al.  Recurrence Sequences , 2003, Mathematical surveys and monographs.

[31]  Jan-Hendrik Evertse,et al.  On sums of S-units and linear recurrences , 1984 .

[32]  Arnaldo Vieira Moura,et al.  Generating Asymptotically Non-terminant Initial Variable Values for Linear Diagonalizable Programs , 2013, SCSS.

[33]  Andreas Podelski,et al.  Termination proofs for systems code , 2006, PLDI '06.

[34]  Joël Ouaknine,et al.  Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences , 2013, ICALP.

[35]  Grzegorz Rozenberg,et al.  Cornerstones of undecidability , 1994, Prentice Hall International Series in Computer Science.

[36]  Christer Lech,et al.  A note on recurring series , 1953 .

[37]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[38]  Leonid Khachiyan,et al.  Computing integral points in convex semi-algebraic sets , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[39]  Supratik Chakraborty Termination Of Linear Programs , 2008 .

[40]  Jin-Yi Cai,et al.  Computing Jordan Normal Forms Exactly for Commuting Matrices in Polynomial Time , 1994, Int. J. Found. Comput. Sci..