A Multistage Position/Force Control for Constrained Robotic Systems With Friction: Joint-Space Decomposition, Linearization, and Multiobjective Observer/Controller Synthesis Using LMI Formalism

A historical review of constrained robot modeling and control strategies is first introduced. Next, a design of a motion/force controller for a constrained servo-robot, which is based on a commonly known modeling structure, is proposed. The contact between the end-effector and the environment is subject to frictional features. Accordingly, the control plant is based on the LuGre friction closed-loop observer. Therefore, new nonlinear position and force input transforms, which are slightly different from classical computed torques, are proposed, combined with a new change of variable. The main purpose of this paper is to establish the stability condition by using the passivity of interconnected linear and nonlinear subplants. From then on, because of this formulation, the authors succeed in designing a full-order dynamic position feedback and an integral force controller that ensure exponential stabilization within an Hinfin multiobjective optimization. These conditions are expressed in terms of linear matrix inequalities. The performances are experimentally validated on a two-degrees-of-freedom robot manipulator acting on a horizontal worktable with friction. The LuGre model estimator exhibits a richer behavior in terms of friction compensation and positioning tracking when experimentally compared to the Karnopp friction compensation. The latter form exhibits poor modeling properties at zero crossings of the velocity

[1]  J. W. Humberston Classical mechanics , 1980, Nature.

[2]  Shay-Ping T. Wang,et al.  Nonlinear Robust Hybrid Control of Robot Manipulators , 1988, 1988 American Control Conference.

[3]  Thomas B. Sheridan,et al.  Robust compliant motion for manipulators, part I: The fundamental concepts of compliant motion , 1986, IEEE J. Robotics Autom..

[4]  J.A. Tenreiro Machado,et al.  Dynamic analysis in variable structure position/force hybrid control of manipulators , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[5]  J. K. Mills Constrained manipulator dynamic models and hybrid control , 1988, Proceedings IEEE International Symposium on Intelligent Control 1988.

[6]  Tetsuro Yabuta,et al.  Nonlinear basic stability concept of the hybrid position/force control scheme for robot manipulators , 1992, IEEE Trans. Robotics Autom..

[7]  Romeo Ortega,et al.  Necessary and sufficient conditions for passivity of the LuGre friction model , 2000, IEEE Trans. Autom. Control..

[8]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[9]  Yury Orlov,et al.  Nonlinear Hinfinity-control of nonsmooth time-varying systems with application to friction mechanical manipulators , 2003, Autom..

[10]  Andrew A. Goldenberg,et al.  Constrained motion task control of robotic manipulators , 1994 .

[11]  Pascal Bigras,et al.  A multi-objective output-feedback controller for systems with friction , 2004 .

[12]  Wayne J. Book,et al.  Force reflecting teleoperation with adaptive impedance control , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  R. M. DeSantis,et al.  Motion/Force Control of Robotic Manipulators , 1996 .

[14]  Dean Karnopp,et al.  Computer simulation of stick-slip friction in mechanical dynamic systems , 1985 .

[15]  Thomas B. Sheridan,et al.  Robust compliant motion for manipulators, part II: Design method , 1986, IEEE J. Robotics Autom..

[16]  B. Siciliano,et al.  An output feedback parallel force/position regulator for a robot manipulator in contact with a compliant environment , 1997 .

[17]  Andrew A. Goldenberg,et al.  An approach to force and position control of robot manipulators , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[18]  Rha Ron Hensen,et al.  Controlled mechanical systems with friction , 2002 .

[19]  H. Hemami,et al.  Modeling and control of constrained dynamic systems with application to biped locomotion in the frontal plane , 1979 .

[20]  Maarten Steinbuch,et al.  Friction induced hunting limit cycles: A comparison between the LuGre and switch friction model , 2003, Autom..

[21]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[22]  Maarten Steinbuch,et al.  Frequency domain identification of dynamic friction model parameters , 2002, IEEE Trans. Control. Syst. Technol..

[23]  Chen-Yuan Kuo,et al.  Nonlinear robust control of robot manipulators , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[24]  Prabhakar R. Pagilla,et al.  Static and dynamic friction compensation in trajectory tracking control of robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[25]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[26]  Miomir Vukobratović,et al.  Historical perspective of hybrid control in robotics: beginnings, evolution, criticism and trends , 1995 .

[27]  Pierre E. Dupont,et al.  Stability of frictional contact in constrained rigid-body dynamics , 1997, IEEE Trans. Robotics Autom..

[28]  Nariman Sepehri,et al.  Simulation and Experimental Studies of Gear Backlash and Stick-Slip Friction in Hydraulic Excavator Swing Motion , 1996 .

[29]  Heikki N. Koivo,et al.  Dynamics and simulation of compliant motion of a manipulator , 1988, IEEE J. Robotics Autom..

[30]  Pascal Gahinet,et al.  H/sub /spl infin// design with pole placement constraints: an LMI approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[31]  Anton S. Shiriaev,et al.  Friction compensation in the Furuta pendulum for stabilizing rotational modes , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[32]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[33]  Masayoshi Tomizuka,et al.  Adaptive Control of Robot Manipulators in Constrained Motion—Controller Design , 1995 .

[34]  J. Slotine,et al.  An indirect adaptive robot controller , 1989 .

[35]  S. Chatterjee,et al.  Effect of high-frequency excitation on a class of mechanical systems with dynamic friction , 2004 .

[36]  Basilio Bona,et al.  Friction compensation and robustness issues in force/position controlled manipulators , 1995 .

[37]  P. Bigras,et al.  A dynamic feedback tracking design for systems with friction using the LMI formulation , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[38]  Veljko Potkonjak,et al.  Dynamics of contact tasks in robotics. Part I: general model of robot interacting with environment , 1999 .

[39]  Jong Hyeon Park,et al.  Hybrid control of biped robots to increase stability in locomotion , 2000 .

[40]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[41]  Andrew A. Goldenberg,et al.  Force and position control of manipulators during constrained motion tasks , 1989, IEEE Trans. Robotics Autom..

[42]  Bruno Siciliano,et al.  A passivity-based approach to force regulation and motion control of robot manipulators , 1996, Autom..

[43]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[44]  Hariharan Krishnan,et al.  A new approach to position and contact force regulation in constrained robot systems , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[45]  Efstathios Velenis,et al.  EXTENSION OF THE LUGRE DYNAMIC TIRE FRICTION MODEL TO 2D MOTION , 2002 .

[46]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[47]  Zoe Doulgeri,et al.  On the decoupling of position and force controllers in constrained robotic tasks , 1998 .

[48]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[49]  Gerd Hirzinger,et al.  Perfect position/force tracking of robots with dynamical terminal sliding mode control , 2001, J. Field Robotics.

[50]  N. Hogan,et al.  Impedance Control:An Approach to Manipulation,Parts I,II,III , 1985 .

[51]  S. Arimoto Joint-Space Orthogonalization and Passivity for Physical Interpretations of Dextrous Robot Motions Under Geometric Constraints , 1995 .

[52]  M. Gopal,et al.  Modern Control System Theory , 1984 .

[53]  Lilong Cai,et al.  A new approach to force and position control of robot manipulators , 1989, Proceedings. ICCON IEEE International Conference on Control and Applications.