THE EXPONENTIAL FORMULA FOR THE WASSERSTEIN METRIC

A recurring obstacle in the study of Wasserstein gradient flow is the lack of convexity of the square Wasserstein metric. In this paper, we develop a class of transport metrics that have better convexity properties and use these metrics to prove an Euler−Lagrange equation characterizing Wasserstein discrete gradient flow. We then apply these results to give a new proof of the exponential formula for the Wasserstein metric, mirroring Crandall and Liggett’s proof of the corresponding Banach space result [M.G. Crandall and T.M. Liggett, Amer. J. Math. 93 (1971) 265–298]. We conclude by using our approach to give simple proofs of properties of the gradient flow, including the contracting semigroup property and energy dissipation inequality.

[1]  Jürgen Jost,et al.  Convex functionals and generalized harmonic maps into spaces of non positive curvature , 1995 .

[2]  Nicola Gigli,et al.  On the inverse implication of Brenier-Mccann theorems and the structure of (P 2 (M),W 2 ) , 2011 .

[3]  J. Carrillo,et al.  Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations , 2011 .

[4]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[5]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[6]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[7]  E. Carlen,et al.  Contraction of the proximal map and generalized convexity of the Moreau-Yosida regularization in the 2-Wasserstein metric , 2012, 1205.6565.

[8]  Haim Brezis,et al.  Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations , 1971 .

[9]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[10]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[11]  J. A. Carrillo,et al.  The derivation of swarming models: Mean-field limit and Wasserstein distances , 2013, 1304.5776.

[12]  C. Villani Topics in Optimal Transportation , 2003 .

[13]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[14]  Semi-Groups of Nonlinear Contractions in Hilbert Space , 2010 .

[15]  Felix Otto,et al.  Doubly Degenerate Diffusion Equations as Steepest Descent , 1996 .

[16]  José A. Carrillo,et al.  Confinement in nonlocal interaction equations , 2012 .

[17]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[18]  Michael G. Crandall,et al.  GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .

[19]  Søren Rasmussen Non-linear semi-groups evolution equations and productintegral representations , 1972 .

[20]  J. Rulla,et al.  Error analysis for implicit approximations to solutions to Cauchy problems , 1996 .

[21]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[22]  Giuseppe Savaré,et al.  The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation , 2009 .

[23]  H. Brezis,et al.  Convergence and approximation of semigroups of nonlinear operators in Banach spaces , 1972 .

[24]  Uwe F. Mayer,et al.  Gradient flows on nonpositively curved metric spaces and harmonic maps , 1998 .

[25]  Y. Kōmura,et al.  Nonlinear semi-groups in Hilbert space , 1967 .

[26]  Michael G. Crandall,et al.  Semigroups of Nonlinear Transformations in Banach Spaces , 1971 .

[27]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .