Random Strain Fluctuations as Dominant Disorder Source for High-Quality On-Substrate Graphene Devices

Futuristic electronic devices will rely on high electron speeds in graphene. A new investigation shows that random strain in the carbon honeycomb lattice limits the speed of electrons.

[1]  S Das Sarma,et al.  Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering. , 2008, Physical review letters.

[2]  K. Novoselov,et al.  Born-Oppenheimer Breakdown in Graphene , 2006, cond-mat/0611714.

[3]  N. Peres,et al.  Colloquium: The transport properties of graphene: An introduction , 2010, 1007.2849.

[4]  T. Ando Screening Effect and Impurity Scattering in Monolayer Graphene(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2006 .

[5]  K. Sugihara,et al.  Theory of the Transport Properties in Graphite , 1966 .

[6]  B. Wees,et al.  A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride , 2011, 1110.1045.

[7]  A. Morpurgo,et al.  Transport through graphene on SrTiO3. , 2011, Physical review letters.

[8]  S. Sarma,et al.  Electronic transport in two-dimensional graphene , 2010, 1003.4731.

[9]  M I Katsnelson,et al.  Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. , 2008, Physical review letters.

[10]  Kenji Watanabe,et al.  Electrically tunable transverse magnetic focusing in graphene , 2013, Nature Physics.

[11]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[12]  Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene. , 2006, Physical review letters.

[13]  K. Shepard,et al.  Spin and valley quantum Hall ferromagnetism in graphene , 2012, Nature Physics.

[14]  A. Zettl,et al.  Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles , 2010, Science.

[15]  K. L. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.

[16]  Jian-Hao Chen,et al.  Defect scattering in graphene. , 2009, Physical review letters.

[17]  K. L. Shepard,et al.  Multicomponent fractional quantum Hall effect in graphene , 2010, 1010.1179.

[18]  C. Hierold,et al.  Spatially resolved Raman spectroscopy of single- and few-layer graphene. , 2006, Nano letters.

[19]  S. Ryu,et al.  Optical separation of mechanical strain from charge doping in graphene. , 2012, Nature communications.

[20]  S. Sarma,et al.  A self-consistent theory for graphene transport , 2007, Proceedings of the National Academy of Sciences.

[21]  S. Adam,et al.  Mechanism for puddle formation in graphene , 2011, 1112.1070.

[22]  K. Novoselov,et al.  Commensurate–incommensurate transition in graphene on hexagonal boron nitride , 2014, Nature Physics.

[23]  F. Guinea,et al.  Spontaneous strains and gap in graphene on boron nitride , 2014, 1404.7777.

[24]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[25]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[26]  E. Williams,et al.  Charged Impurity Scattering in Graphene , 2007, 0708.2408.

[27]  M. Potemski,et al.  Cloning of Dirac fermions in graphene superlattices , 2013, Nature.

[28]  Y. Son,et al.  Effects of strain on electronic properties of graphene , 2009, 0908.0977.

[29]  K. Novoselov,et al.  Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. , 2007, Nature materials.

[30]  C. Stampfer,et al.  Dielectric screening of the Kohn anomaly of graphene on hexagonal boron nitride , 2012, 1212.3993.

[31]  D. Glattli,et al.  Quantum Hall effect in exfoliated graphene affected by charged impurities: Metrological measurements , 2011, 1110.4884.

[32]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[33]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[34]  K. Novoselov,et al.  Effect of a high-kappa environment on charge carrier mobility in graphene. , 2008, Physical review letters.

[35]  K. Novoselov,et al.  Micrometer-scale ballistic transport in encapsulated graphene at room temperature. , 2011, Nano letters.

[36]  Tsuneya Ando,et al.  Phonons and Electron-Phonon Scattering in Carbon Nanotubes , 2002 .

[37]  R. Gorbachev,et al.  Weak localization in graphene flakes. , 2007, Physical review letters.

[38]  M. Katsnelson,et al.  Electron scattering on microscopic corrugations in graphene , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  D. Maslov,et al.  Transport and elastic scattering times as probes of the nature of impurity scattering in single-layer and bilayer graphene. , 2009, Physical review letters.

[40]  S. Adam,et al.  Origin of band gaps in graphene on hexagonal boron nitride , 2014, Nature Communications.

[41]  R. Yakimova,et al.  Weak localization scattering lengths in epitaxial, and CVD graphene , 2012, 1305.2381.

[42]  Francisco Guinea,et al.  Electron-hole puddles in the absence of charged impurities , 2011, 1111.6280.

[43]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[44]  B L Altshuler,et al.  Weak-localization magnetoresistance and valley symmetry in graphene. , 2006, Physical review letters.

[45]  T. Heinz,et al.  Intrinsic line shape of the Raman 2D-mode in freestanding graphene monolayers. , 2013, Nano letters.

[46]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[47]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[48]  C. Hierold,et al.  Raman imaging of doping domains in graphene on SiO2 , 2007, 0709.4156.

[49]  C. Stampfer,et al.  Limitations to carrier mobility and phase-coherent transport in bilayer graphene. , 2014, Physical review letters.

[50]  Kentaro Nomura,et al.  Quantum transport of massless Dirac fermions. , 2007, Physical review letters.

[51]  F. Guinea,et al.  Gauge fields in graphene , 2010, 1003.5179.