On the distribution of the length of the second row of a Young diagram under Plancherel measure

[1]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[2]  J. Baik,et al.  Limiting Distributions for a Polynuclear Growth Model with External Sources , 2000, math/0003130.

[3]  J. Baik Random vicious walks and random matrices , 2000, math/0001022.

[4]  Spohn,et al.  Universal distributions for growth processes in 1+1 dimensions and random matrices , 1999, Physical review letters.

[5]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[6]  P. Forrester Random walks and random permutations , 1999, math/9907037.

[7]  K. Johansson Discrete orthogonal polynomial ensembles and the Plancherel measure. , 1999, math/9906120.

[8]  G. Olshanski,et al.  Asymptotics of Plancherel measures for symmetric groups , 1999, math/9905032.

[9]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[10]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[11]  Eric M. Rains,et al.  Increasing Subsequences and the Classical Groups , 1998, Electron. J. Comb..

[12]  K. Johansson THE LONGEST INCREASING SUBSEQUENCE IN A RANDOM PERMUTATION AND A UNITARY RANDOM MATRIX MODEL , 1998 .

[13]  Alexander Its,et al.  A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics , 1997 .

[14]  Stephanos Venakides,et al.  New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems , 1997 .

[15]  Stephanos Venakides,et al.  Asymptotics for polynomials orthogonal with respect to varying exponential weights , 1997 .

[16]  P. Deift,et al.  Asymptotics for the painlevé II equation , 1995 .

[17]  P. Deift,et al.  The collisionless shock region for the long-time behavior of solutions of the KdV equation , 1994 .

[18]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9210074.

[19]  The Quantum Correlation Function as the ז Function of Classical Differential Equations , 1993 .

[20]  P. Deift,et al.  A steepest descent method for oscillatory Riemann-Hilbert problems , 1992, math/9201261.

[21]  Bruce E. Sagan,et al.  The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.

[22]  Athanassios S. Fokas,et al.  Discrete Painlevé equations and their appearance in quantum gravity , 1991 .

[23]  Vladimir E. Korepin,et al.  Differential Equations for Quantum Correlation Functions , 1990 .

[24]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[25]  I. Gohberg,et al.  Factorization of Matrix Functions and Singular Integral Operators , 1980 .

[26]  Curtis Greene,et al.  An Extension of Schensted's Theorem , 1974 .

[27]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[28]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 3: Sorting and Searching , 1974 .

[29]  Tosio Kato Perturbation theory for linear operators , 1966 .

[30]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.