CMB data analysis and sparsity

[1]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[2]  J. Fadili,et al.  SZ and CMB reconstruction using generalized morphological component analysis , 2007, 0712.0588.

[3]  Mohamed-Jalal Fadili,et al.  Morphological Component Analysis: An Adaptive Thresholding Strategy , 2007, IEEE Transactions on Image Processing.

[4]  S. Pires,et al.  Sunyaev-Zel'dovich cluster reconstruction in multiband bolometer camera surveys , 2006 .

[5]  Michael Elad,et al.  Morphological diversity and source separation , 2006, IEEE Signal Processing Letters.

[6]  Mark D. Plumbley Recovery of Sparse Representations by Polytope Faces Pursuit , 2006, ICA.

[7]  J. Cardoso,et al.  Cosmic microwave background and foregrounds in Wilkinson Microwave Anisotropy Probe first-year data , 2005 .

[8]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[9]  Jean-Jacques Fuchs,et al.  Recovery of exact sparse representations in the presence of bounded noise , 2005, IEEE Transactions on Information Theory.

[10]  Y. Moudden,et al.  Wavelets, ridgelets and curvelets on the sphere , 2005, astro-ph/0509883.

[11]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[12]  P. Groot,et al.  A spectrophotometric study of RW Trianguli , 2004, astro-ph/0401029.

[13]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[15]  Simon Masnou,et al.  Disocclusion: a variational approach using level lines , 2002, IEEE Trans. Image Process..

[16]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[17]  R. Gispert,et al.  Foregrounds and CMB experiments: I. Semi-analytical estimates of contamination , 1999, astro-ph/9903176.

[18]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[19]  Jean-Luc Starck,et al.  Image processing and data analysis: the multiscale approach , 1998 .

[20]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[21]  Stefano Alliney,et al.  An algorithm for the minimization of mixed l1 and l2 norms with application to Bayesian estimation , 1994, IEEE Trans. Signal Process..

[22]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[23]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[24]  Stefano Alliney,et al.  Digital filters as absolute norm regularizers , 1992, IEEE Trans. Signal Process..

[25]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[26]  EURASIP Journal on Applied Signal Processing 2005:15, 2470–2485 c ○ 2005 Hindawi Publishing Corporation Cosmological Non-Gaussian Signature Detection: Comparing Performance of Different Statistical Tests , 2004 .

[27]  D. Donoho,et al.  Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .

[28]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[29]  Willi Freeden,et al.  Combined Spherical Harmonic and Wavelet Expansion—A Future Concept in Earth's Gravitational Determination , 1997 .

[30]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.