Extending stochastic soot simulation to higher pressures

[1]  Andreas Eibeck,et al.  Stochastic interacting particle systems and nonlinear kinetic equations , 2003 .

[2]  D. Urban,et al.  Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure. Appendix G , 1997 .

[3]  Jasdeep Singh,et al.  Stochastic modeling of soot particle size and age distributions in laminar premixed flames , 2005 .

[4]  Alan C. Hindmarsh,et al.  Description and use of LSODE, the Livermore Solver for Ordinary Differential Equations , 1993 .

[5]  M. Frenklach Method of moments with interpolative closure , 2002 .

[6]  K. W. Lee,et al.  The log-normal size distribution theory of brownian aerosol coagulation for the entire particle size range: Part I—analytical solution using the harmonic mean coagulation kernel , 1999 .

[7]  C. N. Davies,et al.  The Mechanics of Aerosols , 1964 .

[8]  H. Bockhorn,et al.  Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons , 2000 .

[9]  Markus Kraft,et al.  An efficient stochastic algorithm for simulating Nano-particle dynamics , 2002 .

[10]  Wolfgang Wagner,et al.  An Efficient Stochastic Algorithm for Studying Coagulation Dynamics and Gelation Phenomena , 2000, SIAM J. Sci. Comput..

[11]  M. Kraft,et al.  A stochastic approach to calculate the particle size distribution function of soot particles in laminar premixed flames , 2003 .

[12]  M. Frenklach,et al.  Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames , 1998 .

[13]  R. I. A. PATTERSON,et al.  The Linear Process Deferment Algorithm: A new technique for solving population balance equations , 2006, SIAM J. Sci. Comput..

[14]  M. Frenklach,et al.  Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar , 1995 .