Loading ultracold gases in topological Floquet bands: the fate of current and center-of-mass responses

Topological band structures can be designed by subjecting lattice systems to time-periodic modulations, as was proposed for irradiated graphene, and recently demonstrated in two-dimensional (2D) ultracold gases and photonic crystals. However, changing the topological nature of Floquet Bloch bands from trivial to non-trivial, by progressively launching the time-modulation, is necessarily accompanied with gap-closing processes: this has important consequences for the loading of particles into a target Floquet band with non-trivial topology, and hence, on the subsequent measurements. In this work, we analyse how such loading sequences can be optimized in view of probing the topology of 2D Floquet bands through transport measurements. In particular, we demonstrate the robustness of center-of-mass responses, as compared to current responses, which present important irregularities due to an interplay between the micro-motion of the drive and inter-band interference effects. The results presented in this work illustrate how probing the center-of-mass displacement of atomic clouds offers a reliable method to detect the topology of Floquet bands, after realistic loading sequences.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  G. Juzeliūnas,et al.  Floquet analysis of a quantum system with modulated periodic driving , 2016, 1608.08420.

[3]  P. Zoller,et al.  Helical Floquet Channels in 1D Lattices. , 2016, Physical review letters.

[4]  A. Eckardt,et al.  Colloquium: Atomic quantum gases in periodically driven optical lattices , 2016, 1606.08041.

[5]  T. Ozawa,et al.  Synthetic dimensions for cold atoms from shaking a harmonic trap , 2016, 1605.09310.

[6]  A. Szameit,et al.  Observation of photonic anomalous Floquet topological insulators , 2016, Nature Communications.

[7]  Robert R. Thomson,et al.  Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice , 2016, Nature Communications.

[8]  Silvio Simani,et al.  Analysis of Advanced Control Strategies with Application to a Heating Element Model , 2017 .

[9]  N. Goldman,et al.  Parametric instability rates in periodically driven band systems , 2016, 1610.02972.

[10]  E. Mueller,et al.  Nonequilibrium fractional Hall response after a topological quench , 2016, 1608.04395.

[11]  P. Zoller,et al.  Topological quantum matter with ultracold gases in optical lattices , 2016, Nature Physics.

[12]  N. Goldman,et al.  Realization of uniform synthetic magnetic fields by periodically shaking an optical square lattice , 2016, 1605.09604.

[13]  W. Alt,et al.  Robustness of topologically protected edge states in quantum walk experiments with neutral atoms , 2016, 1605.03633.

[14]  Logan W. Clark,et al.  Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition , 2016, Science.

[15]  Enrico Santamato,et al.  Statistical moments of quantum-walk dynamics reveal topological quantum transitions , 2016, Nature Communications.

[16]  M. D. Caio,et al.  Hall response and edge current dynamics in Chern insulators out of equilibrium , 2016, 1604.04216.

[17]  A. Eckardt,et al.  Interband Heating Processes in a Periodically Driven Optical Lattice , 2016, 1604.00850.

[18]  M. Lewenstein,et al.  Modified spin-wave theory and spin liquid behavior of cold bosons on an inhomogeneous triangular lattice , 2016, 1603.06561.

[19]  G. Refael,et al.  Remnant Geometric Hall Response in a Quantum Quench. , 2016, Physical review letters.

[20]  P. Zoller,et al.  Dynamical Buildup of a Quantized Hall Response from Nontopological States. , 2016, Physical review letters.

[21]  T. Ozawa,et al.  Measurement of Chern numbers through center-of-mass responses , 2016, 1602.01696.

[22]  A. Mitra,et al.  Occupation probabilities and current densities of bulk and edge states of a Floquet topological insulator , 2016, 1601.05732.

[23]  Yan-Kui Bai,et al.  Topologically trivial and nontrivial edge bands in graphene induced by irradiation , 2016, 1601.01269.

[24]  Nuh Gedik,et al.  Selective scattering between Floquet–Bloch and Volkov states in a topological insulator , 2015, Nature Physics.

[25]  D. Huse,et al.  Heating and many-body resonances in a periodically driven two-band system , 2015, 1512.02119.

[26]  K. Yasuda,et al.  Brillouin-Wigner theory for high-frequency expansion in periodically driven systems: Application to Floquet topological insulators , 2015, 1511.00755.

[27]  T. Ozawa,et al.  Floquet topological system based on frequency-modulated classical coupled harmonic oscillators , 2015, 1510.04697.

[28]  C. Weitenberg,et al.  Experimental reconstruction of the Berry curvature in a Floquet Bloch band , 2015, Science.

[29]  G. Santoro,et al.  Quantum annealing and nonequilibrium dynamics of Floquet Chern insulators , 2015, 1508.01883.

[30]  M. Aidelsburger Artificial Gauge Fields with Ultracold Atoms in Optical Lattices , 2015 .

[31]  Tomotaka Kuwahara,et al.  Floquet-Magnus Theory and Generic Transient Dynamics in Periodically Driven Many-Body Quantum Systems , 2015, 1508.05797.

[32]  E. Demler,et al.  Prethermal Floquet Steady States and Instabilities in the Periodically Driven, Weakly Interacting Bose-Hubbard Model. , 2015, Physical review letters.

[33]  M. Rudner,et al.  Topological singularities and the general classification of Floquet–Bloch systems , 2015, 1506.07647.

[34]  N. Goldman,et al.  Dynamic Optical Lattices of Subwavelength Spacing for Ultracold Atoms. , 2015, Physical review letters.

[35]  T. Ozawa,et al.  Four-Dimensional Quantum Hall Effect with Ultracold Atoms. , 2015, Physical review letters.

[36]  A. Eckardt,et al.  Role of real-space micromotion for bosonic and fermionic Floquet fractional Chern insulators , 2015, 1504.03583.

[37]  M. D. Caio,et al.  Quantum Quenches in Chern Insulators. , 2015, Physical review letters.

[38]  W. Ketterle,et al.  Observation of Bose–Einstein condensation in a strong synthetic magnetic field , 2015, Nature Physics.

[39]  Egidijus Anisimovas,et al.  Consistent high-frequency approximation for periodically driven quantum systems , 2015 .

[40]  G. Refael,et al.  Controlled Population of Floquet-Bloch States via Coupling to Bose and Fermi Baths , 2015, 1502.02664.

[41]  N. Goldman,et al.  Periodically driven quantum matter: The case of resonant modulations , 2014, 1410.8425.

[42]  N. Cooper,et al.  Scattering theory for Floquet-Bloch states , 2014, 1410.5364.

[43]  S. Choudhury,et al.  Transverse collisional instabilities of a Bose-Einstein condensate in a driven one-dimensional lattice , 2014, 1410.4576.

[44]  M. Rigol,et al.  Dynamical preparation of Floquet Chern insulators , 2014, Nature Communications.

[45]  D. Carpentier,et al.  Topological index for periodically driven time-reversal invariant 2D systems. , 2014, Physical review letters.

[46]  N. R. Cooper,et al.  Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms , 2014, Nature Physics.

[47]  G. Usaj,et al.  Multiterminal conductance of a Floquet topological insulator. , 2014, Physical review letters.

[48]  A. Polkovnikov,et al.  Stroboscopic versus nonstroboscopic dynamics in the Floquet realization of the Harper-Hofstadter Hamiltonian , 2014, 1408.5209.

[49]  L. D'alessio,et al.  Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering , 2014, 1407.4803.

[50]  J. Struck,et al.  Spin-orbit coupling in periodically driven optical lattices , 2014, 1407.1953.

[51]  Tilman Esslinger,et al.  Experimental realization of the topological Haldane model with ultracold fermions , 2014, Nature.

[52]  Luis E. F. Foa Torres,et al.  Irradiated graphene as a tunable Floquet topological insulator , 2014, 1406.1711.

[53]  A. Grushin,et al.  Floquet fractional Chern insulators. , 2014, Physical review letters.

[54]  F. Sols,et al.  Generation of uniform synthetic magnetic fields by split driving of an optical lattice , 2014, 1403.5915.

[55]  Roderich Moessner,et al.  Equilibrium states of generic quantum systems subject to periodic driving. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  K. Sacha,et al.  Erratum: Simulation of non-Abelian lattice gauge fields with a single-component gas , 2014, 1403.1221.

[57]  M. Rigol,et al.  Long-time behavior of periodically driven isolated interacting lattice systems , 2014, 1402.5141.

[58]  Wei-mou Zheng,et al.  Floquet topological states in shaking optical lattices , 2014, 1402.4034.

[59]  N. Cooper,et al.  Dynamic optical superlattices with topological bands , 2014, 1402.3295.

[60]  N. Goldman,et al.  Design of laser-coupled honeycomb optical lattices supporting Chern insulators , 2014, 1401.1718.

[61]  P. Jarillo-Herrero,et al.  Observation of Floquet-Bloch States on the Surface of a Topological Insulator , 2013, Science.

[62]  W. Ketterle,et al.  Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. , 2013, Physical review letters.

[63]  J. Barreiro,et al.  Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. , 2013, Physical review letters.

[64]  N. Cooper,et al.  Adiabatic preparation of vortex lattices , 2013, 1306.4611.

[65]  Li You,et al.  Atomic spin-orbit coupling synthesized with magnetic-field-gradient pulses , 2013, 1306.2829.

[66]  G. Juzeliūnas,et al.  Magnetically generated spin-orbit coupling for ultracold atoms. , 2013, Physical review letters.

[67]  Alexandre Dauphin,et al.  Extracting the Chern number from the dynamics of a Fermi gas: implementing a quantum Hall bar for cold atoms. , 2013, Physical review letters.

[68]  Philipp Hauke,et al.  Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields , 2013, Nature Physics.

[69]  Felix Dreisow,et al.  Photonic Floquet topological insulators , 2012, Nature.

[70]  Roderich Moessner,et al.  Floquet topological insulators , 2012, 1211.5623.

[71]  J. Zakrzewski,et al.  Fast dynamics for atoms in optical lattices. , 2012, Physical review letters.

[72]  N. Goldman,et al.  Measuring topology in a laser-coupled honeycomb lattice: from Chern insulators to topological semi-metals , 2012, 1209.1126.

[73]  D. Delande,et al.  Dynamics of cold bosons in optical lattices: effects of higher Bloch bands , 2012, 1206.6740.

[74]  Michael Levin,et al.  Anomalous edge states and the bulk-edge correspondence for periodically-driven two dimensional systems , 2012, 1212.3324.

[75]  Wojciech H Zurek,et al.  Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. , 2012, Physical review letters.

[76]  M. Lewenstein,et al.  Non-abelian gauge fields and topological insulators in shaken optical lattices. , 2012, Physical review letters.

[77]  M. Lewenstein,et al.  Tunable gauge potential for neutral and spinless particles in driven optical lattices. , 2012, Physical review letters.

[78]  N. R. Cooper,et al.  Mapping the Berry curvature from semiclassical dynamics in optical lattices , 2011, 1112.5616.

[79]  K. Sacha,et al.  Frustration and time-reversal symmetry breaking for Fermi and Bose-Fermi systems , 2011, 1112.0972.

[80]  Andrew G. White,et al.  Observation of topologically protected bound states in photonic quantum walks , 2011, Nature Communications.

[81]  J. García-Ripoll,et al.  Seeing topological order in time-of-flight measurements. , 2011, Physical review letters.

[82]  S. Roche,et al.  Tuning laser-induced band gaps in graphene , 2011, 1105.2327.

[83]  A. Bermudez,et al.  Synthetic gauge fields for vibrational excitations of trapped ions. , 2011, Physical review letters.

[84]  Liang Fu,et al.  Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels , 2011, 1104.4636.

[85]  R. Le Targat,et al.  Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices , 2011, Science.

[86]  Gil Refael,et al.  Floquet topological insulator in semiconductor quantum wells , 2010, 1008.1792.

[87]  A. Kolovsky Creating artificial magnetic fields for cold atoms by photon-assisted tunneling , 2010, 1006.5270.

[88]  Takuya Kitagawa,et al.  Topological Characterization of Periodically-Driven Quantum Systems , 2010, 1010.6126.

[89]  E. Arimondo,et al.  Controlling atomic matter waves by shaking , 2010 .

[90]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[91]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition and relaxation to a steady state , 2009, 0912.4034.

[92]  M. Lewenstein,et al.  Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice , 2009, 0907.0423.

[93]  R. Fazio,et al.  Trap-modulation spectroscopy of the Mott-insulator transition in optical lattices , 2008, 0812.3005.

[94]  A. Zenesini,et al.  Exploring dynamic localization with a Bose-Einstein condensate , 2008, 0812.1997.

[95]  A. Zenesini,et al.  Coherent control of dressed matter waves. , 2008, Physical review letters.

[96]  Hideo Aoki,et al.  Photovoltaic Hall effect in graphene , 2008, 0807.4767.

[97]  M. Oberthaler,et al.  Single-particle tunneling in strongly driven double-well potentials. , 2008, Physical review letters.

[98]  A. Hemmerich,et al.  Staggered-vortex superfluid of ultracold bosons in an optical lattice. , 2007, Physical review letters.

[99]  A. Zenesini,et al.  Observation of photon-assisted tunneling in optical lattices. , 2007, Physical review letters.

[100]  AC-induced superfluidity , 2007, 0709.0605.

[101]  C Sias,et al.  Dynamical control of matter-wave tunneling in periodic potentials. , 2007, Physical review letters.

[102]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[103]  A. Eckardt,et al.  Superfluid-insulator transition in a periodically driven optical lattice. , 2005, Physical review letters.

[104]  M. Lukin,et al.  Fractional quantum Hall states of atoms in optical lattices. , 2004, Physical Review Letters.

[105]  S. Fishman,et al.  Effective Hamiltonians for periodically driven systems , 2003, nlin/0301033.

[106]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[107]  Grossmann,et al.  Coherent destruction of tunneling. , 1991, Physical review letters.