Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures

[1]  Qingfeng Liu,et al.  Direct synthesis of carbon nanotubes decorated with size-controllable Fe nanoparticles encapsulated by graphitic layers , 2008 .

[2]  Qingfeng Liu,et al.  Synthesis and High Thermal Stability of Double-Walled Carbon Nanotubes Using Nickel Formate Dihydrate as Catalyst Precursor , 2007 .

[3]  Yunqi Liu,et al.  A New Technique for Controllably Producing Branched or Encapsulating Nanostructures in a Vapor–Liquid–Solid Process , 2007 .

[4]  B. Büchner,et al.  Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties , 2006 .

[5]  B. Büchner,et al.  Magnetic force microscopy sensors using iron-filled carbon nanotubes , 2006 .

[6]  Y. Bando,et al.  Atomic structures of iron-based single-crystalline nanowires crystallized inside multi-walled carbon nanotubes as revealed by analytical electron microscopy , 2006 .

[7]  T. Gemming,et al.  Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene , 2005 .

[8]  Suwen Liu,et al.  A novel hybrid of carbon nanotubes/iron nanoparticles: iron-filled nodule-containing carbon nanotubes , 2005 .

[9]  D. Peng,et al.  Magnetic properties of Fe clusters adhering to single-wall carbon nanotubes , 2005 .

[10]  Thomas Gemming,et al.  Ferromagnetic filled carbon nanotubes and nanoparticles: synthesis and lipid-mediated delivery into human tumor cells , 2005 .

[11]  Zhenyu Liu,et al.  Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene , 2005 .

[12]  G. Pan,et al.  Carbon nanotubes filled with metallic nanowires , 2004 .

[13]  M. M. Oliveira,et al.  One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors , 2003 .

[14]  I. Mönch,et al.  Magnetic properties of aligned Fe-filled carbon nanotubes , 2003 .

[15]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[16]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[17]  Mauricio Terrones,et al.  Enhanced magnetic coercivities in Fe nanowires , 1999 .

[18]  T. Kyotani,et al.  Nickel nanowires of 4 nm diameter in the cavity of carbon nanotubes , 1999 .

[19]  A. Govindaraj,et al.  Synthesis of multi-walled and single-walled nanotubes, aligned-nanotube bundles and nanorods by employing organometallic precursors , 1998 .

[20]  S. Subramoney Novel Nanocarbons—Structure, Properties, and Potential Applications , 1998 .

[21]  O. Stéphan,et al.  Filling carbon nanotubes with metals by the arc-discharge method: the key role of sulfur , 1998 .

[22]  A. Govindaraj,et al.  Large aligned-nanotube bundles from ferrocene pyrolysis , 1998 .

[23]  S. Mørup,et al.  Spin-glass-like ordering of the magnetic moments of interacting nanosized maghemite particles. , 1995, Physical review. B, Condensed matter.

[24]  T. Ebbesen,et al.  Capillarity and Wetting of Carbon Nanotubes , 1994, Science.

[25]  S. Linderoth,et al.  Surface effects in metallic iron nanoparticles. , 1994, Physical review letters.

[26]  T. Ichihashi,et al.  Opening carbon nanotubes with oxygen and implications for filling , 1993, Nature.

[27]  P. Ajayan,et al.  Capillarity-induced filling of carbon nanotubes , 1993, Nature.