Finding any given 2‐factor in sparse pseudorandom graphs efficiently

Given an $n$-vertex pseudorandom graph $G$ and an $n$-vertex graph $H$ with maximum degree at most two, we wish to find a copy of $H$ in $G$, i.e.\ an embedding $\varphi\colon V(H)\to V(G)$ so that $\varphi(u)\varphi(v)\in E(G)$ for all $uv\in E(H)$. Particular instances of this problem include finding a triangle-factor and finding a Hamilton cycle in $G$. Here, we provide a deterministic polynomial time algorithm that finds a given $H$ in any suitably pseudorandom graph $G$. The pseudorandom graphs we consider are $(p,\lambda)$-bijumbled graphs of minimum degree which is a constant proportion of the average degree, i.e.\ $\Omega(pn)$. A $(p,\lambda)$-bijumbled graph is characterised through the discrepancy property: $\left|e(A,B)-p|A||B|\right |<\lambda\sqrt{|A||B|}$ for any two sets of vertices $A$ and $B$. Our condition $\lambda=O(p^2n/\log n)$ on bijumbledness is within a log factor from being tight and provides a positive answer to a recent question of Nenadov. We combine novel variants of the absorption-reservoir method, a powerful tool from extremal graph theory and random graphs. Our approach is based on that of Nenadov (\emph{Bulletin of the London Mathematical Society}, to appear) and on ours (arXiv:1806.01676), together with additional ideas and simplifications.

[1]  János Komlós,et al.  Blow-up Lemma , 1997, Combinatorics, Probability and Computing.

[2]  Yoshiharu Kohayakawa,et al.  Tight Hamilton cycles in random hypergraphs , 2013, Random Struct. Algorithms.

[3]  Hal A. Kierstead,et al.  Hamiltonian Square-Paths , 1996, J. Comb. Theory, Ser. B.

[4]  A. Walfisz Zur additiven Zahlentheorie , 1935 .

[5]  Noga Alon,et al.  Explicit Ramsey graphs and orthonormal labelings , 1994, Electron. J. Comb..

[6]  Gábor N. Sárközy,et al.  An algorithmic version of the blow-up lemma , 1998 .

[7]  Y. Kohayakawa,et al.  Blow-up lemmas for sparse graphs , 2016, 1612.00622.

[8]  Richard Montgomery,et al.  Spanning trees in random graphs , 2018, Advances in Mathematics.

[9]  Rajko Nenadov,et al.  On a Ramsey-Turán Variant of the Hajnal-Szemerédi Theorem , 2020, SIAM J. Discret. Math..

[10]  Noga Alon,et al.  Approximating the independence number via theϑ-function , 1998, Math. Program..

[11]  Yoshiharu Kohayakawa,et al.  Universality and tolerance , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[12]  Yoshiharu Kohayakawa,et al.  Near-perfect clique-factors in sparse pseudorandom graphs , 2018, Electron. Notes Discret. Math..

[13]  N. Alon Tough Ramsey Graphs Without Short Cycles , 1995 .

[14]  Noga Alon,et al.  Universality, Tolerance, Chaos and Order , 2010 .

[15]  A.B.J. Kuijlaars,et al.  Universality , 2002, Experimental Studies of Boson Fields in Solids.

[16]  Yufei Zhao,et al.  Extremal results in sparse pseudorandom graphs , 2012, ArXiv.

[17]  M. Simonovits,et al.  Cycles of even length in graphs , 1974 .

[18]  Yoshiharu Kohayakawa,et al.  Clique-factors in sparse pseudorandom graphs , 2018, Eur. J. Comb..

[19]  M. Murty Ramanujan Graphs , 1965 .

[20]  Yoshiharu Kohayakawa,et al.  Turán's theorem for pseudo-random graphs , 2007, J. Comb. Theory, Ser. A.

[21]  David Conlon,et al.  Almost-spanning universality in random graphs , 2017, Random Struct. Algorithms.

[22]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[23]  R. Montgomery Embedding bounded degree spanning trees in random graphs , 2014, 1405.6559.

[24]  Yoshiharu Kohayakawa,et al.  Near-optimum Universal Graphs for Graphs with Bounded Degrees , 2001, RANDOM-APPROX.

[25]  Sangjune Lee,et al.  Universality of Random Graphs for Graphs of Maximum Degree Two , 2013, SIAM J. Discret. Math..

[26]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[27]  Rajko Nenadov,et al.  On a Ramsey-Tur\'an variant of the Hajnal-Szemer\'edi theorem , 2018, 1806.03530.

[28]  R. Nenadov Triangle‐factors in pseudorandom graphs , 2018, Bulletin of the London Mathematical Society.

[29]  Benny Sudakov,et al.  Sparse pseudo-random graphs are Hamiltonian , 2003, J. Graph Theory.

[30]  Noga Alon,et al.  Explicit construction of linear sized tolerant networks , 1988, Discret. Math..

[31]  Vasek Chvátal,et al.  Tough graphs and hamiltonian circuits , 1973, Discret. Math..

[32]  David G. Kirkpatrick,et al.  On the Complexity of General Graph Factor Problems , 1981, SIAM J. Comput..

[33]  Asaf Ferber,et al.  Spanning universality in random graphs , 2018, Random Struct. Algorithms.

[34]  Benny Sudakov,et al.  Triangle Factors In Sparse Pseudo-Random Graphs , 2004, Comb..

[35]  Arnold Walfisz Zur additiven Zahlentheorie. II. , 1936 .

[36]  Noga Alon,et al.  Sparse universal graphs for bounded‐degree graphs , 2007, Random Struct. Algorithms.

[37]  Daniela Kühn,et al.  On Pósa's Conjecture for Random Graphs , 2012, SIAM J. Discret. Math..

[38]  János Komlós,et al.  The Regularity Lemma and Its Applications in Graph Theory , 2000, Theoretical Aspects of Computer Science.

[39]  Vojtech Rödl,et al.  A Dirac-Type Theorem for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[40]  Matthew Kwan Almost all Steiner triple systems have perfect matchings , 2016, Proceedings of the London Mathematical Society.

[41]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[42]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[43]  Kyle Luh,et al.  Optimal threshold for a random graph to be 2-universal , 2016, Transactions of the American Mathematical Society.

[44]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[45]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[46]  Vojtech Rödl,et al.  An approximate Dirac-type theorem for k-uniform hypergraphs , 2008, Comb..

[47]  David Conlon A Sequence of Triangle-Free Pseudorandom Graphs , 2017, Comb. Probab. Comput..

[48]  Domingos Dellamonica,et al.  An Improved Upper Bound on the Density of Universal Random Graphs , 2012, LATIN.