A Comparison of Generalized Cross Validation and Modified Maximum Likelihood for Estimating the Parameters of a Stochastic Process

Wahba compared the performance of generalized cross validation (GCV) and modified maximum likelihood (MML) procedures for choosing the smoothing parameter of a smoothing spline. This work makes a more careful study of the two procedures when the stochastic model motivating the modified maximum likelihood estimate is correct. It is shown that in the case of the linear smoothing spline with equally spaced observations, both estimates are asymptotically normal with the GCV estimate having twice the asymptotic variance of the MML estimate. The impact of using these estimates on the subsequent predictions is also calculated

[1]  Yasuyuki Toyooka Prediction error in a linear model with estimated parameters , 1982 .

[2]  Naoto Kunitomo,et al.  Properties of Predictors in Misspecified Autoregressive Time Series Models , 1985 .

[3]  I. Good,et al.  On the inversion of circulant matrices. , 1950, Biometrika.

[4]  Fritz Oberhettinger Fourier Expansions: A Collection of Formulas , 1973 .

[5]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[6]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[7]  G. Reinsel,et al.  Prediction of multivariate time series by autoregressive model fitting , 1985 .

[8]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[9]  W. Fuller,et al.  Properties of Predictors for Autoregressive Time Series , 1981 .

[10]  G. Wahba A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem , 1985 .

[11]  Calyampudi Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications , 1967 .

[12]  R. Bhansali Effects of Not Knowing the Order of an Autoregressive Process on the Mean Squared Error of Prediction—I , 1981 .

[13]  J. Muth Optimal Properties of Exponentially Weighted Forecasts , 1960 .

[14]  B. Silverman,et al.  Spline Smoothing: The Equivalent Variable Kernel Method , 1984 .

[15]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[16]  Michael L. Stein,et al.  Minimum norm quadratic estimation of spatial variograms , 1987 .

[17]  M. Hutchinson,et al.  Smoothing noisy data with spline functions , 1985 .

[18]  A. Balakrishnan,et al.  Spectral theory of random fields , 1983 .

[19]  R. Kohn,et al.  A new algorithm for spline smoothing based on smoothing a stochastic process , 1987 .

[20]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[21]  G. Matheron The intrinsic random functions and their applications , 1973, Advances in Applied Probability.

[22]  G. Wahba,et al.  Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation , 1980 .

[23]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .