Hybrid finite element methods for the Signorini problem

We study three mixed linear finite element methods for the numerical simulation of the two-dimensional Signorini problem. Applying Falk's Lemma and saddle point theory to the resulting discrete mixed variational inequality allows us to state the convergence rate of each of them. Two of these finite elements provide optimal results under reasonable regularity assumptions on the Signorini solution, and the numerical investigation shows that the third method also provides optimal accuracy.

[1]  Padmanabhan Seshaiyer,et al.  Uniform hp convergence results for the mortar finite element method , 2000, Math. Comput..

[2]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[3]  Hiroyuki Usami,et al.  Nonexistence results of entire solutions for superlinear elliptic inequalities , 1992 .

[4]  F. B. Belgacem,et al.  EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .

[5]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[6]  Franco Brezzi,et al.  Error estimates for the three-field formulation with bubble stabilization , 2001, Math. Comput..

[7]  Susanne C. Brenner,et al.  SOME NONSTANDARD FINITE ELEMENT ESTIMATES WITH APPLICATIONS TO 3D POISSON AND SIGNORINI PROBLEMS , 2001 .

[8]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[9]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[10]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[11]  Z. Zhong Finite Element Procedures for Contact-Impact Problems , 1993 .

[12]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[13]  Yvon Maday,et al.  Coupling finite element and spectral methods: first results , 1990 .

[14]  José Barros-Neto,et al.  Problèmes aux limites non homogènes , 1966 .

[15]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[16]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1977 .

[17]  Patrice Coorevits,et al.  Mixed finite element methods for unilateral problems: convergence analysis and numerical studies , 2002, Math. Comput..

[18]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[19]  F. Ben NUMERICAL SIMULATION OF SOME VARIATIONAL INEQUALITIES ARISEN FROM UNILATERAL CONTACT PROBLEMS BY THE FINITE ELEMENT METHODS , 2000 .

[20]  S. Tirmizi,et al.  Numerical methods for unilateral problems , 1986 .

[21]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1978 .

[22]  Ivan Hlaváček,et al.  Contact between elastic bodies. III. Dual finite element analysis , 1981 .

[23]  M. Moussaoui,et al.  Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan , 1992 .

[24]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[25]  P. Raviart,et al.  Primal hybrid finite element methods for 2nd order elliptic equations , 1977 .

[26]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[27]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[28]  Faker Ben Belgacem Discrétisations 3D non conformes par la méthode de décomposition de domaine des éléments avec joints : analyse mathématique et mise en oeuvre pour le problème de Poisson , 1993 .

[29]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[30]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .