Path-Independent Quantum Gates with Noisy Ancilla.

Ancilla systems are often indispensable to universal control of a nearly isolated quantum system. However, ancilla systems are typically more vulnerable to environmental noise, which limits the performance of such ancilla-assisted quantum control. To address this challenge of ancilla-induced decoherence, we propose a general framework that integrates quantum control and quantum error correction, so that we can achieve robust quantum gates resilient to ancilla noise. We introduce the path independence criterion for fault-tolerant quantum gates against ancilla errors. As an example, a path-independent gate is provided for superconducting circuits with a hardware-efficient design.

[1]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[2]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[3]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[4]  Rui Chao,et al.  Quantum Error Correction with Only Two Extra Qubits. , 2017, Physical review letters.

[5]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[6]  R Hanson,et al.  Universal control and error correction in multi-qubit spin registers in diamond. , 2013, Nature nanotechnology.

[7]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  Y. Xu,et al.  Error-transparent operations on a logical qubit protected by quantum error correction , 2019, Nature Physics.

[9]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[10]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[11]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[12]  Andrew W. Cross,et al.  Fault-tolerant magic state preparation with flag qubits , 2018, Quantum.

[13]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[14]  B. Broda Non-Abelian Stokes theorem in action , 2000, math-ph/0012035.

[15]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[16]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[17]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[18]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[19]  U. Boscain,et al.  THE EUROPEAN PHYSICAL JOURNAL D Training Schrödinger ’ s cat : quantum optimal control Strategic report on current status , visions and goals for research in Europe , 2015 .

[20]  Guanyu Zhu,et al.  Triangular color codes on trivalent graphs with flag qubits , 2019 .

[21]  Rui Chao,et al.  Fault-tolerant quantum computation with few qubits , 2017, npj Quantum Information.

[22]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[23]  Philip Reinhold,et al.  Error-corrected gates on an encoded qubit , 2019, Nature Physics.

[24]  Kurt Jacobs,et al.  Error-transparent evolution: the ability of multi-body interactions to bypass decoherence , 2012, 1210.8007.

[25]  Ling Hu,et al.  Quantum error correction and universal gate set operation on a binomial bosonic logical qubit , 2018, Nature Physics.

[26]  Christiane P. Koch,et al.  Training Schrödinger’s cat: quantum optimal control , 2015, 1508.00442.

[27]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[28]  Christopher Chamberland,et al.  FLAG FAULT-TOLERANT ERROR CORRECTION WITH ARBITRARY DISTANCE CODES , 2017, 1708.02246.

[29]  K. B. Whaley,et al.  Robustness of Decoherence-Free Subspaces for Quantum Computation , 1999 .

[30]  Liang Jiang,et al.  Fault-tolerant detection of a quantum error , 2018, Science.

[31]  P. Knight,et al.  The Quantum jump approach to dissipative dynamics in quantum optics , 1997, quant-ph/9702007.

[32]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  V. Negnevitsky,et al.  Encoding a qubit in a trapped-ion mechanical oscillator , 2018, Nature.

[34]  Mazyar Mirrahimi,et al.  Hardware-efficient autonomous quantum memory protection. , 2012, Physical review letters.

[35]  Liang Jiang,et al.  Universal control of an oscillator with dispersive coupling to a qubit , 2015, 1502.08015.

[36]  Heng Fan,et al.  Single-Shot Readout of a Nuclear Spin Weakly Coupled to a Nitrogen-Vacancy Center at Room Temperature. , 2016, Physical review letters.

[37]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[38]  Liang Jiang,et al.  Implementing a universal gate set on a logical qubit encoded in an oscillator , 2016, Nature Communications.

[39]  Eliot Kapit,et al.  Error-Transparent Quantum Gates for Small Logical Qubit Architectures. , 2017, Physical review letters.

[40]  Liang Jiang,et al.  Cavity State Manipulation Using Photon-Number Selective Phase Gates. , 2015, Physical review letters.

[41]  Andrew W. Cross,et al.  Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits , 2019, Physical Review X.

[42]  Jiangfeng Du,et al.  Noise-resilient quantum evolution steered by dynamical decoupling , 2013, Nature Communications.

[43]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.