Determination of division algebras with 243 elements

Finite nonassociative division algebras (i.e., finite semifields) with 243 elements are completely classified.

[1]  Semifield Planes of Order 81 , 2008 .

[2]  Irvin Roy Hentzel,et al.  Primitivity of Finite semifields with 64 and 81 Elements , 2007, Int. J. Algebra Comput..

[3]  Erwin Kleinfeld Techniques for Enumerating Veblen-Wedderburn Systems , 1960, JACM.

[4]  I. F. Rúa Primitive and Non Primitive Finite Semifields , 2004 .

[5]  José Ranilla,et al.  Classification of semifields of order 64 , 2009 .

[6]  B. David Saunders,et al.  Efficient matrix rank computation with application to the study of strongly regular graphs , 2007, ISSAC '07.

[7]  Leonard Eugene Dickson Linear algebras in which division is always uniquely possible , 1906 .

[8]  Robert S. Coulter,et al.  Planar Functions and Planes of Lenz-Barlotti Class II , 1997, Des. Codes Cryptogr..

[9]  W. Kantor Finite semifields , 2005 .

[10]  G. Wene On the multiplicative structure of finite division rings , 1991 .

[11]  J. H. Maclagan-Wedderburn A theorem on finite algebras , 1905 .

[12]  Ignacio F. Rúa,et al.  Symplectic spread-based generalized Kerdock codes , 2007, Des. Codes Cryptogr..

[13]  W. Kantor,et al.  Symplectic semifield planes and ℤ₄–linear codes , 2003 .

[14]  Vikram Jha,et al.  Fractional dimensions in semifields of odd order , 2011, Des. Codes Cryptogr..

[15]  D. Knuth Finite semifields and projective planes , 1965 .

[16]  M. Hall The Theory Of Groups , 1959 .

[17]  Rudolf Lide,et al.  Finite fields , 1983 .

[18]  A. Adrian Albert Finite noncommutative division algebras , 1958 .

[19]  A. A. Albert,et al.  On nonassociative division algebras , 1952 .

[20]  Minerva Cordero,et al.  A survey of finite semifields , 1999, Discret. Math..

[21]  John Sheekey,et al.  On primitive elements in finite semifields , 2011, Finite Fields Their Appl..

[23]  Giampaolo Menichetti On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field , 1977 .

[24]  I. F. R'ua,et al.  New Semifield Planes of order 81 , 2008, 0803.0411.

[25]  n-Dimensional algebras over a field with a cyclic extension of degree n , 1996 .

[26]  José Ranilla,et al.  New advances in the computational exploration of semifields , 2011, Int. J. Comput. Math..

[27]  Xueli Wang,et al.  Perfect nonlinear binomials and their semifields , 2009, Finite Fields Their Appl..

[28]  A. Calderbank,et al.  Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .

[29]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.