Transferring lead-free piezoelectric ceramics into application

After twenty years of partly quiet and ten years of partly enthusiastic research into lead-free piezoceramics there are now clear prospects for transfer into applications in some areas. This mimics prior research into eliminating lead from other technologies that resulted in restricted lead use in batteries and dwindling use in other applications. A figure of merit analysis for key devices is presented and used to contrast lead-containing and lead-free piezoceramics. A number of existing applications emerge, where the usage of lead-free piezoceramics may be envisaged in the near future. A sufficient transition period to ensure reliability, however, is required. The use of lead-free piezoceramics for demanding applications with high reliability, displacements and frequency as well as a wide temperature range appears to remain in the distant future. New devices are outlined, where the figure of merit suggests skipping lead-containing piezoceramics altogether. Suggestions for the next pertinent research requirements are provided.

[1]  R. Goyer,et al.  Lead toxicity: current concerns. , 1993, Environmental health perspectives.

[2]  W. Jo,et al.  Impedance Spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 Ceramics Modified with (K0.5Na0.5)NbO3 , 2014 .

[3]  X. Tan,et al.  Polarization alignment, phase transition, and piezoelectricity development in polycrystalline 0.5Ba(Zr0.2 Ti0.8)O3-0.5(Ba0.7 Ca0.3)TiO3 , 2014 .

[4]  Paul D. Franzon,et al.  Load characterization of high displacement piezoelectric actuators with various end conditions , 2001 .

[5]  M. Gröting,et al.  Chemical order and local structure of the lead-free relaxor ferroelectric Na1/2Bi1/2TiO3 , 2011 .

[6]  Jaesung Song,et al.  Lead-free NKN-5LT piezoelectric materials for multilayer ceramic actuator , 2009 .

[7]  Y. Sakabe,et al.  Temperature Dependence of Piezoelectric Properties for Textured SrBi2Nb2O9 Ceramics , 2007, 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics.

[8]  G. Messing,et al.  Enhanced Electromechanical Properties and Temperature Stability of Textured (K0.5Na0.5)NbO3‐Based Piezoelectric Ceramics , 2011 .

[9]  J. Rödel,et al.  High temperature blocking force measurements of soft lead zirconate titanate , 2010 .

[10]  Y. Ivanov,et al.  23Na NMR in the relaxor ferroelectric Na1/2Bi1/2TiO3 , 2006 .

[11]  W. Jo,et al.  Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic , 2014 .

[12]  S. Kojima,et al.  Formation of Morphotropic Phase Boundary in (Na0.5K0.5)NbO3–BaZrO3–(Bi0.5Li0.5)TiO3 Lead-Free Piezoelectric Ceramics , 2013 .

[13]  Hao Wang,et al.  Microstructure and electrical properties of MnO-Doped (Na0.5Bi0.5)0.92Ba0.08TiO3 lead-free piezoceramics , 2007 .

[14]  Xiaoming Chen,et al.  Influence of dispersed coarse grains on mechanical and piezoelectric properties in (Bi1/2Na1/2)TiO3 ceramics , 2004 .

[15]  K. Kikuta,et al.  Processing and Piezoelectric Properties of Lead‐Free (K,Na) (Nb,Ta) O3 Ceramics , 2005 .

[16]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[17]  Eric Cross,et al.  Materials science: Lead-free at last , 2004, nature.

[18]  A. Kholkin,et al.  Lead-free piezoelectrics: Current status and perspectives , 2013 .

[19]  N. Setter,et al.  Lead Free Piezoelectric Materials , 2004 .

[20]  C. Randall,et al.  High Strain Piezoelectric Multilayer Actuators—A Material Science and Engineering Challenge , 2005 .

[21]  Jacob L. Jones,et al.  Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3–7% BaTiO3 piezoelectric ceramic , 2009 .

[22]  D. Vanderbilt,et al.  Hexagonal ABC semiconductors as ferroelectrics. , 2012, Physical review letters.

[23]  Shashank Priya,et al.  Design and fabrication of bimorph transducer for optimal vibration energy harvesting , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[24]  M. Abtew,et al.  Lead-free Solders in Microelectronics , 2000 .

[25]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[26]  K. Uematsu,et al.  High-Power Piezoelectric Characteristics of C-Axis Crystal-Oriented (Sr,Ca)2NaNb5O15 Ceramics , 2012 .

[27]  X. Tan,et al.  Unique single-domain state in a polycrystalline ferroelectric ceramic , 2014 .

[28]  Kyoung Kwan Ahn,et al.  Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics , 2013 .

[29]  G. Lockitch Perspectives on lead toxicity. , 1993, Clinical biochemistry.

[30]  Rabe,et al.  First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. , 1995, Physical review. B, Condensed matter.

[31]  Hyoung-Su Han,et al.  High strain in lead-free Nb-doped Bi1/2(Na0.84K0.16)1/2TiO3–SrTiO3 incipient piezoelectric ceramics , 2014 .

[32]  Hajime Nagata,et al.  Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics , 2008 .

[33]  Ke Wang,et al.  (K, Na)NbO3‐Based Lead‐Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges , 2013 .

[34]  B. Malič,et al.  Initial stage sintering mechanism of NaNbO3 and implications regarding the densification of alkaline niobates , 2014 .

[35]  Hajime Nagata,et al.  Detection of morphotropic phase boundary of (Bi1/2Na1/2)TiO3–Ba(Al1/2Sb1/2)O3 solid-solution ceramics , 2009 .

[36]  Hyo-Derk Park,et al.  Fabrication and Sensing Behavior of Piezoelectric Microcantilever for Nanobalance , 2003 .

[37]  L. Bisanti,et al.  The effect of lead on male fertility: a time to pregnancy (TTP) study. , 2000, American journal of industrial medicine.

[38]  J. Zhai,et al.  Correlation Between the Microstructure and Electrical Properties in High‐Performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Lead‐Free Piezoelectric Ceramics , 2012 .

[39]  Y. Sakabe,et al.  Temperature dependence of piezoelectric properties for textured SBN ceramics , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  X. Tan,et al.  Optimal working regime of lead–zirconate–titanate for actuation applications , 2013 .

[41]  K. H. Hardtl,et al.  PbO vapour pressure in the Pb(Ti1−x)O3 system , 1969 .

[42]  Jun-Sik Kim,et al.  High-authority Piezoelectric Actuation System Synthesis through Mechanical Resonance and Electrical Tailoring , 2005 .

[43]  Toshiaki Yamaguchi,et al.  Sinterability and Piezoelectric Properties of (K,Na)NbO3 Ceramics with Novel Sintering Aid , 2004 .

[44]  Wook Jo,et al.  Frequency-dependence of large-signal properties in lead-free piezoceramics , 2012 .

[45]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[46]  D. Xue,et al.  Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3- 50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary , 2011 .

[47]  Jacob L. Jones,et al.  Structure and properties of Fe-modified Na0.5Bi0.5TiO3 at ambient and elevated temperature , 2012 .

[48]  W. Jo,et al.  Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics , 2011 .

[49]  V. Keast,et al.  Compositional distributions in classical and lead-free brasses , 2006 .

[50]  H. J. Zhang,et al.  Effect of humidity and hydrogen on the promotion of indentation crack growth in lead-free ferroelectric ceramics , 2010 .

[51]  A. Safari,et al.  Electromechanical Properties of Acceptor-Doped Lead-Free Piezoelectric Ceramics , 2014 .

[52]  M. Kosec,et al.  Knudsen effusion mass spectrometric approach to the thermodynamics of Na2O–Nb2O5 system , 2012 .

[53]  Gerbrand Ceder,et al.  Screening for high-performance piezoelectrics using high-throughput density functional theory , 2011 .

[54]  Aleksandra M. Vinogradov,et al.  Electro-mechanical properties of the piezoelectric polymer PVDF , 1999 .

[55]  Kenji Uchino,et al.  Piezoelectric Actuators and Ultrasonic Motors , 1996 .

[56]  Nam Seo Goo,et al.  Prediction of actuating displacement in a piezoelectric composite actuator with a thin sandwiched PZT plate by a finite element simulation , 2007 .

[57]  A. J. Masys,et al.  Piezoelectric strain in lead zirconate titante ceramics as a function of electric field, frequency, and dc bias , 2003 .

[58]  Gerbrand Ceder,et al.  High-throughput screening of perovskite alloys for piezoelectric performance and thermodynamic stability , 2013, 1309.1727.

[59]  K. Rabe,et al.  Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations , 2012, 1201.2743.

[60]  A Taylor,et al.  Lead poisoning: case studies. , 2002, British journal of clinical pharmacology.

[61]  C. Elsasser,et al.  Formation of vacancies and copper substitutionals in potassium sodium niobate under various processing conditions , 2010 .

[62]  V. Steffen,et al.  Multimodal vibration damping through piezoelectric patches and optimal resonant shunt circuits , 2006 .

[63]  H. Mielke Lead in the Inner Cities , 1999, American Scientist.

[64]  H. Shimizu,et al.  Investigation of High-Power Properties of (Bi,Na,Ba)TiO3 and (Sr,Ca)2NaNb5O15 Piezoelectric Ceramics , 2013 .

[65]  Shashank Priya,et al.  Lead-free piezoelectrics , 2012 .

[66]  Piezoelectric Properties of Lead‐free Piezoelectric Ceramics and Their Energy Harvester Characteristics , 2013 .

[67]  K. Puttlitz,et al.  Handbook of Lead-Free Solder Technology for Microelectronic Assemblies , 2004 .

[68]  Jing Zhu,et al.  Ferroelectric polarization and domain walls in orthorhombic (K1―xNax)NbO3 lead-free ferroelectric ceramics , 2010 .

[69]  K. Bowman,et al.  Phase coexistence and ferroelastic texture in high strain (1−x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoceramics , 2012 .

[70]  Thomas R. Shrout,et al.  Lead-free piezoelectric ceramics: Alternatives for PZT? , 2007, Progress in Advanced Dielectrics.

[71]  Hartmut Fuess,et al.  Field-induced phase transition in Bi1/2Na1/2TiO3- based lead-free piezoelectric ceramics , 2010 .

[72]  Hajime Nagata,et al.  Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions , 2008 .

[73]  Qing-Ming Wang,et al.  High and Frequency‐Insensitive Converse Piezoelectric Coefficient Obtained in AgSbO3‐Modified (Li, K, Na)(Nb,Ta)O3 Lead‐Free Piezoceramics , 2013 .

[74]  W. Jo,et al.  Cycling stability of lead-free BNT–8BT and BNT–6BT–3KNN multilayer actuators and bulk ceramics , 2014 .

[75]  D. T. Peters,et al.  New bismuth/selenium red boss alloys solve lead concerns , 1997 .

[76]  G. Schneider Influence of Electric Field and Mechanical Stresses on the Fracture of Ferroelectrics , 2007 .

[77]  J. Koruza,et al.  Mechanical constitutive behavior and exceptional blocking force of lead-free BZT-xBCT piezoceramics , 2014 .

[78]  Takayuki Watanabe,et al.  Microstructure of BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3 Piezoelectric Ceramics , 2012 .

[79]  Hajime Nagata,et al.  Current status and prospects of lead-free piezoelectric ceramics , 2005 .

[80]  Marc Kamlah,et al.  Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior , 2001 .

[81]  F. Levassort,et al.  Lead-free high-frequency linear-array transducer (30 MHz) for in vivo skin imaging , 2013, 2013 IEEE International Ultrasonics Symposium (IUS).

[82]  Shujun Zhang,et al.  Piezoelectric Materials for High Temperature Sensors , 2011 .

[83]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[84]  Doru C. Lupascu,et al.  Temperature‐Insensitive (K,Na)NbO3‐Based Lead‐Free Piezoactuator Ceramics , 2013 .

[85]  Matthew J. Davis,et al.  Large and stable thickness coupling coefficients of [001]C-oriented KNbO3 and Li-modified (K,Na)NbO3 single crystals , 2007 .

[86]  T. Granzow,et al.  Aging of poled ferroelectric ceramics due to relaxation of random depolarization fields by space-charge accumulation near grain boundaries , 2009, 0912.3382.

[87]  K. Nakamura,et al.  Orientation dependence of electromechanical coupling factors in KNbO/sub 3/ , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[88]  H. Krueger,et al.  Stress Sensitivity of Piezoelectric Ceramics: Part 1. Sensitivity to Compressive Stress Parallel to the Polar Axis , 1967 .

[89]  I. Reaney,et al.  Nano‐ and Mesoscale Structure of Na$_{1 \over 2}$Bi$_{1 \over 2}$TiO3: A TEM Perspective , 2012 .

[90]  Don Berlincourt,et al.  Effects of High Static Stress on the Piezoelectric Properties of Transducer Materials , 1961 .

[91]  Kohji Toda,et al.  Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric Na0.5Bi4.5Ti4O15 Ceramic , 1985 .

[92]  S. Priya Advances in energy harvesting using low profile piezoelectric transducers , 2007 .

[93]  K. Bowman,et al.  In Situ X‐ray Diffraction of Biased Ferroelastic Switching in Tetragonal Lead‐free (1−x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 Piezoelectrics , 2013 .

[94]  R. Newnham,et al.  Materials for high temperature acoustic and vibration sensors: A review , 1994 .

[95]  Hajime Nagata,et al.  Current Developments and Prospective of Lead-Free Piezoelectric Ceramics , 2008 .

[96]  C. Randall,et al.  Dielectric and piezoelectric properties of niobium-modified BiInO_3–PbTiO_3 perovskite ceramics with high Curie temperatures , 2005 .

[97]  M. Kosec,et al.  Lead-free Piezoelectrics Based on Alkaline Niobates : Synthesis, Sintering and Microstructure , 2008 .

[98]  R. Eichel Characterization of Defect Structure in Acceptor-Modified Piezoelectric Ceramics by Multifrequency and Multipulse Electron Paramagnetic Resonance Spectroscopy , 2008 .

[99]  J. Rödel,et al.  Simultaneous Enhancement of Fracture Toughness and Unipolar Strain in Pb(Zr,Ti)O3‐ZrO2 Composites Through Composition Adjustment , 2014 .

[100]  J. Koruza,et al.  Determination of the True Operational Range of a Piezoelectric Actuator , 2014 .

[101]  S. Nahm,et al.  Microstructure and piezoelectric properties of the CuO-added (Na0.5K0.5)(Nb0.97Sb0.03)O3 lead-free piezoelectric ceramics , 2008 .

[102]  H. Kishi,et al.  dc-Electrical Degradation of the BT-Based Material for Multilayer Ceramic Capacitor with Ni internal Electrode: Impedance Analysis and Microstructure , 2001 .

[103]  G. Schneider,et al.  Investigation of fracture toughness of modified (KxNa1 − x)NbO3 lead-free piezoelectric ceramics , 2012 .

[104]  Prasanta Kumar Panda,et al.  Review: environmental friendly lead-free piezoelectric materials , 2009, Journal of Materials Science.

[105]  Lead in the Inner Cities Policies to reduce children's exposure to lead may be overlooking a major source of lead in the environment , 1999 .

[106]  X. X. Wang,et al.  Electromechanical and ferroelectric properties of (Bi1∕2Na1∕2)TiO3–(Bi1∕2K1∕2)TiO3–BaTiO3 lead-free piezoelectric ceramics , 2004 .

[107]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[108]  S. Wada,et al.  Thermal Reliability of Alkaline Niobate-Based Lead-Free Piezoelectric Ceramics , 2009 .

[109]  Mohamed S. Gadala,et al.  Self-heat generation in piezoelectric stack actuators used in fuel injectors , 2009 .

[110]  Benjamin P. Burton,et al.  First Principles Phase Diagram Calculations for the System NaNbO3-KNbO3: can spinodal decomposition generate relaxor ferroelectricity? , 2007 .

[111]  S. Wada,et al.  Enhancement of Qm by co-doping of Li and Cu to potassium sodium niobate lead-free ceramics , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[112]  E. Aulbach,et al.  Temperature‐Dependent Electrical Properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 Ceramics , 2008 .

[113]  Michael J. Reece,et al.  Piezoelectric Ceramics with Super-High Curie Points , 2009 .

[114]  Folker Renken High temperature electronics for future hybrid drive systems , 2009, 2009 13th European Conference on Power Electronics and Applications.

[115]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[116]  Wook Jo,et al.  Temperature- and Frequency-Dependent Properties of the 0.75Bi1/2Na1/2TiO3–0.25SrTiO3 Lead-Free Incipient Piezoceramic , 2014 .

[117]  M. Kosec,et al.  Synthesis of Sodium Potassium Niobate: A Diffusion Couples Study , 2008 .

[118]  Shujun Zhang,et al.  Mitigation of thermal and fatigue behavior in K(0.5)Na(0.5)NbO(3)-based lead free piezoceramics. , 2008, Applied physics letters.

[119]  R. Yang,et al.  Influence of alloying elements Nb, Zr, Sn, and oxygen on structural stability and elastic properties of the Ti2448 alloy , 2014 .

[120]  Jacob L. Jones,et al.  Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics , 2011 .

[121]  H. Chan,et al.  First-principles study on the electronic and optical properties of Na₀.₅Bi₀.₅TiO₃lead-free piezoelectric crystal , 2010 .

[122]  W. Jo,et al.  Temperature‐Dependent Properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–SrTiO3 Lead‐Free Piezoceramics , 2012 .

[123]  D. Bierer,et al.  Bismuth subsalicylate: history, chemistry, and safety. , 1990, Reviews of infectious diseases.

[124]  T. Shrout,et al.  Investigation of potassium niobate as an ultrasonic transducer material , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[125]  Helmut Ehrenberg,et al.  Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system , 2007 .

[126]  J. Rödel,et al.  Temperature and driving field dependence of fatigue processes in PZT bulk ceramics , 2011 .

[127]  D. Suvorov,et al.  The thermal decomposition of K0.5Bi0.5TiO3 ceramics , 2009 .

[128]  A. Akbarzadeh,et al.  Finite-temperature properties of Ba(Zr,Ti)O3 relaxors from first principles. , 2012, Physical review letters.

[129]  K. Uchino,et al.  Dynamic Observation of Crack Propagation in Piezoelectric Multilayer Actuators , 1993 .

[130]  J. Rödel,et al.  Correlation of small- and large-signal properties of lead zirconate titanate multilayer actuators , 2009 .

[131]  S. Kawada,et al.  High-Power Piezoelectric Vibration Characteristics of Textured SrBi2Nb2O9 Ceramics , 2006 .

[132]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[133]  X. Tan,et al.  Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi(1/2)Na(1/2))TiO3-BaTiO3 piezoelectrics. , 2012, Physical review letters.

[134]  Klaus Reichmann,et al.  The Chemical Interaction of Silver–Palladium Alloy Electrodes with Bismuth‐Based Piezomaterials , 2010 .

[135]  M. Perazella Lead and the kidney: nephropathy, hypertension, and gout. , 1996, Connecticut medicine.

[136]  C. Randall,et al.  Possibility of Cofiring a Nickel Inner Electrode in a (Na0.5K0.5)NbO3–LiF Piezoelectric Actuator , 2013 .

[137]  Jianguo Zhu,et al.  Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. , 2014, Journal of the American Chemical Society.

[138]  J. S. Lee,et al.  Electromechanical and microstructural study of (1-x) Bi0.5 (Na0.40 K0.10) TiO3-x (Ba0.70 Sr0.30) TiO3 lead-free piezoelectric ceramics , 2014, Journal of Electroceramics.

[139]  Dragan Damjanovic,et al.  High‐Strain Lead‐free Antiferroelectric Electrostrictors , 2009 .

[140]  Jacob L. Jones,et al.  Defect structure and materials “hardening” in Fe2O3-doped [Bi0.5Na0.5]TiO3 ferroelectrics , 2010 .

[141]  Robert E. Newnham,et al.  Properties of Materials: Anisotropy, Symmetry, Structure , 2005 .

[142]  G. Arlt,et al.  Internal bias in ferroelectric ceramics: Origin and time dependence , 1988 .

[143]  Vernon G. Thomas,et al.  Attitudes and Issues Preventing Bans on Toxic Lead Shot and Sinkers in North America and Europe , 1997 .

[144]  D. Munz,et al.  Young's Modulus of Soft PZT from Partial Unloading Tests , 2002 .

[145]  H. Nagata,et al.  Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics , 2009 .

[146]  K. Suganuma Advances in lead-free electronics soldering , 2001 .

[147]  X. Tan,et al.  Electric-field-induced polarization and strain in 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3 under uniaxial stress , 2013 .

[148]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[149]  K. Kwok,et al.  Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics , 2008 .

[150]  T. Tani,et al.  Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric Ceramics with a Preferred Orientation Processed by the Reactive Templated Grain Growth Method , 1999 .

[151]  R. Lilis,et al.  Nephropathy in Chronic Lead Poisoning , 1968, British journal of industrial medicine.

[152]  A. Safari,et al.  Property-processing relationship in lead-free (K, Na, Li) NbO3-solid solution system , 2007 .

[153]  Sergei V. Kalinin,et al.  Nanoscale Insight Into Lead‐Free BNT‐BT‐xKNN , 2012 .

[154]  Michael Naderer,et al.  BNT-based multilayer device with large and temperature independent strain made by a water-based preparation process , 2011 .

[155]  Jacob L. Jones,et al.  Origins of Electro‐Mechanical Coupling in Polycrystalline Ferroelectrics During Subcoercive Electrical Loading , 2011 .

[156]  L. E. Cross,et al.  Domain wall excitations and their contributions to the weak‐signal response of doped lead zirconate titanate ceramics , 1988 .

[157]  N. Setter,et al.  Temperature stability of the piezoelectric properties of Li-modified KNN ceramics , 2007 .

[158]  Tadashi Takenaka,et al.  (Bi1/2Na1/2)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics , 1991 .

[159]  W. Jo,et al.  Large blocking force in Bi1/2Na1/2TiO3-based lead-free piezoceramics , 2012 .

[160]  D. Berlincourt,et al.  Thermal Expansion and Pyroelectricity in Lead Titanate Zirconate and Barium Titanate , 1963 .

[161]  J. Rödel,et al.  Constraint-induced crack initiation at electrode edges in piezoelectric ceramics , 2001 .

[162]  Hajime Nagata,et al.  Grain-Size Effect on Electrical Properties of (Bi1/2K1/2)TiO3 Ceramics , 2007 .

[163]  Michael J. Hoffmann,et al.  Estimation of strain from piezoelectric effect and domain switching in morphotropic PZT by combined analysis of macroscopic strain measurements and synchrotron X-ray data , 2007 .

[164]  H. Nagata,et al.  Piezoelectric Properties of (Bi1/2Na1/2)TiO3-Based Solid Solution for Lead-Free High-Power Applications , 2008 .

[165]  S. H. Choy,et al.  0.90(Bi1/2Na1/2)TiO3–0.05(Bi1/2K1/2)TiO3– 0.05BaTiO3 transducer for ultrasonic wirebonding applications , 2006 .

[166]  Dragan Damjanovic,et al.  Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics , 2009, Journal of Applied Physics.

[168]  Hartmut Fuess,et al.  In Situ Transmission Electron Microscopy of Electric Field-Triggered Reversible Domain Formation in Bi-Based Lead-Free Piezoceramics , 2010 .

[169]  Deere Avenue,et al.  Newport Corporation Statement Regarding Compliance with Directive 2011/65/EU on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (Recast) (the "RoHS Directive") , 2014 .

[170]  Wook Jo,et al.  Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. I. Structure and room temperature properties , 2008 .

[171]  Nicola A. Spaldin,et al.  Theoretical Prediction of New High-Performance Lead-Free Piezoelectrics , 2005 .

[172]  P. Erhart,et al.  Defect-Dipole Formation in Copper-Doped PbTiO3 Ferroelectrics. , 2008, Physical review letters.

[173]  M. Hoffman,et al.  Electric Fatigue of Lead-Free Piezoelectric Materials , 2014 .

[174]  Jacob L. Jones,et al.  Advances in Lead-Free Piezoelectric Materials for Sensors and Actuators , 2010, Sensors.

[175]  R. Pirc,et al.  NMR and the spherical random bond-random field model of relaxor ferroelectrics , 2000 .

[176]  K. Miura,et al.  First-Principles Study of Structural Trend of BiMO3 and BaMO3: Relationship between Tetragonal or Rhombohedral Structure and the Tolerance Factors , 2010 .

[177]  V. Shvartsman,et al.  Lead-Free Relaxor Ferroelectrics , 2012 .

[178]  W. Jo,et al.  Electric-field–temperature phase diagram of the ferroelectric relaxor system (1 − x)Bi1/2Na1/2TiO3 − xBaTiO3 doped with manganese , 2014 .

[179]  Pim Groen,et al.  An introduction to piezoelectric materials and components , 2012 .

[180]  Peter L. Tsai,et al.  Global Benefits from the Phaseout of Leaded Fuel , 2011 .

[181]  R. Resta Theory of the electric polarization in crystals , 1992 .

[182]  T. Tou,et al.  Properties of (Bi0.5Na0.5)TiO3–BaTiO3–(Bi0.5Na0.5)(Mn1/3Nb2/3)O3 Lead-Free Piezoelectric Ceramics and Its Application to Ultrasonic Cleaner , 2009 .

[183]  Jackie Fenn,et al.  Mastering the Hype Cycle: How to Choose the Right Innovation at the Right Time , 2008 .

[184]  Kyle G. Webber,et al.  Relaxor/Ferroelectric Composites: A Solution in the Quest for Practically Viable Lead‐Free Incipient Piezoceramics , 2014 .

[185]  L. Patrick Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. , 2006, Alternative medicine review : a journal of clinical therapeutic.

[186]  Hirofumi Takahashi,et al.  Fabrication and high durability of functionally graded piezoelectric bending actuators , 2003 .

[187]  Ranjan Sharma,et al.  Nonstoichiometry in Acceptor‐Doped BaTiO3 , 1982 .

[188]  X. Chao,et al.  Phase transition behavior and electrical properties of lead-free (Ba1−xCax)(Zr0.1Ti0.9)O3 piezoelectric ceramics , 2013 .

[189]  P. Gottesfeld,et al.  Lead content in household paints in India. , 2008, The Science of the total environment.

[190]  H. Krueger,et al.  Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature and composition , 1964 .

[191]  Hong Wang,et al.  Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload , 2009 .

[192]  Jiadong Zang,et al.  Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective , 2012, Journal of Electroceramics.

[193]  S. Kawada,et al.  (K,Na)NbO3-Based Multilayer Piezoelectric Ceramics with Nickel Inner Electrodes , 2009 .

[194]  Dragan Damjanovic,et al.  Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics , 2005 .

[195]  Dragan Damjanovic,et al.  Charge migration in Pb(Zr,Ti)O3 ceramics and its relation to ageing, hardening and softening , 2010 .

[196]  H. Nagata,et al.  Depolarization temperature and piezoelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2Li1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics , 2009 .

[197]  Helmut Ehrenberg,et al.  Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. II. Temperature dependent properties , 2008 .

[198]  Gene H. Haertling,et al.  Rainbow Ceramics-A New Type of Ultra-High-Displacement Actuator , 1994 .

[199]  B. Trumble Get the lead out! [lead free solder] , 1998 .

[200]  Jianguo Zhu,et al.  Piezoelectric Properties of LiSbO3-Modified (K0.48Na0.52)NbO3 Lead-Free Ceramics , 2007 .

[201]  Jacob L. Jones,et al.  Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 using in situ high-energy X-ray diffraction during application of electric fields , 2014 .

[202]  L. E. Cross,et al.  Piezoelectric Composite Materials for Ultrasonic Transducer Applications. Part I: Resonant Modes of Vibration of PZT Rod-Polymer Composites , 1985, IEEE Transactions on Sonics and Ultrasonics.

[203]  Liang Zhao,et al.  Enhanced piezoelectric properties of sodium bismuth titanate (Na0.5Bi4.5Ti4O15) ceramics with B‐site cobalt modification , 2009 .