Microarray genomotyping of key experimental strains of Neisseria gonorrhoeae reveals gene complement diversity and five new neisserial genes associated with Minimal Mobile Elements.

[1]  Lori A. S. Snyder,et al.  Divergence and transcriptional analysis of the division cell wall (dcw) gene cluster in Neisseria spp. , 2003, Molecular microbiology.

[2]  Lori A. S. Snyder,et al.  The minimal mobile element. , 2002, Microbiology.

[3]  A. Jeffries,et al.  Genome Analysis and Strain Comparison of Correia Repeats and Correia Repeat-Enclosed Elements in Pathogenic Neisseria , 2002, Journal of bacteriology.

[4]  Stanley Falkow,et al.  Improved analytical methods for microarray-based genome-composition analysis , 2002, Genome Biology.

[5]  M. Hobbs,et al.  Identification and Analysis of Amino Acid Mutations in Porin IB That Mediate Intermediate-Level Resistance to Penicillin and Tetracycline in Neisseria gonorrhoeae , 2002, Antimicrobial Agents and Chemotherapy.

[6]  S. Gulati,et al.  Implications of Phase Variation of a Gene (pgtA) Encoding a Pilin Galactosyl Transferase in Gonococcal Pathogenesis , 2002, The Journal of experimental medicine.

[7]  Matthew J. Betts,et al.  Trev: a DNA trace editor and viewer , 2002, Bioinform..

[8]  Lori A. S. Snyder,et al.  Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. , 2001, Microbiology.

[9]  H. Seifert,et al.  A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates , 2001, Molecular microbiology.

[10]  B. Barrell,et al.  Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491 , 2000, Nature.

[11]  S. Salzberg,et al.  Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. , 2000, Science.

[12]  N. Saunders,et al.  Bacterial evolution: Bacteria play pass the gene , 1999, Current Biology.

[13]  G. Jarvis,et al.  Invasion of Human Mucosal Epithelial Cells by Neisseria gonorrhoeae Upregulates Expression of Intercellular Adhesion Molecule 1 (ICAM-1) , 1999, Infection and Immunity.

[14]  H. Seifert,et al.  Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair , 1998, Molecular microbiology.

[15]  W. Shafer,et al.  Protegrin structure and activity against Neisseria gonorrhoeae , 1997, Infection and immunity.

[16]  S. Normark,et al.  Pilus biogenesis gene, pilC, of Neisseria gonorrhoeae: pilC1 and pilC2 are each part of a larger duplication of the gonococcal genome and share upstream and downstream homologous sequences with opa and pil loci. , 1995, Microbiology.

[17]  C. G. Black,et al.  A promoter associated with the neisserial repeat can be used to transcribe the uvrB gene from Neisseria gonorrhoeae , 1995, Journal of bacteriology.

[18]  L. Fuente,et al.  Genetic Structures Of Non-Penicillinase-Producing Neisseria Gonorrhoeae , 1994 .

[19]  B. Spratt,et al.  Further evidence for the non-clonal population structure of Neisseria gonorrhoeae: extensive genetic diversity within isolates of the same electrophoretic type. , 1994, Microbiology.

[20]  J. Cannon,et al.  Locations of genetic markers on the physical map of the chromosome of Neisseria gonorrhoeae FA1090 , 1994, Journal of bacteriology.

[21]  M. Achtman,et al.  Microevolution within a clonal population of pathogenic bacteria: recombination, gene duplication and horizontal genetic exchange in the opa gene family of Neisseria meningitidis , 1994, Molecular microbiology.

[22]  J. Vázquez,et al.  Genetic structures of non-penicillinase-producing Neisseria gonorrhoeae strains in relation to auxotype and serovar class. , 1994, The Journal of infectious diseases.

[23]  M. O'rourke,et al.  Genetic structure of Neisseria gonorrhoeae populations: a non-clonal pathogen. , 1993, Journal of general microbiology.

[24]  A. Heath,et al.  Role of horizontal genetic exchange in the antigenic variation of the class 1 outer membrane protein of Neisseria meningitidis , 1992, Molecular microbiology.

[25]  B. Tümmler,et al.  Physical and genetic map of the Neisseria gonorrhoeae strain MS11‐N198 chromosome , 1991, Molecular microbiology.

[26]  J. Cannon,et al.  Physical map of the chromosome of Neisseria gonorrhoeae FA1090 with locations of genetic markers, including opa and pil genes , 1991, Journal of bacteriology.

[27]  M. Hobbs,et al.  Characterization of the opa (class 5) gene family of Neisseria meningitidis , 1991, Molecular microbiology.

[28]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[29]  K. Joiner,et al.  Complement binding on serum-sensitive and serum-resistant transformants of Neisseria gonorrhoeae: effect of presensitization with a non-bactericidal monoclonal antibody. , 1989, Microbial pathogenesis.

[30]  P. Sparling,et al.  Gene transfer in Neisseria gonorrhoeae , 1989, Clinical Microbiology Reviews.

[31]  F. F. Correia,et al.  A family of small repeated elements with some transposon-like properties in the genome of Neisseria gonorrhoeae. , 1988, The Journal of biological chemistry.

[32]  N. Carbonetti,et al.  Genetics of protein I of Neisseria gonorrhoeae: construction of hybrid porins. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[33]  G. Murphy,et al.  Recombination among Protein II genes of Neisseria gonorrhoeae generates new coding sequences and increases structural variability in the Protein II family , 1988, Molecular microbiology.

[34]  H. Seifert,et al.  DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae , 1988, Nature.

[35]  F. F. Correia,et al.  A 26-base-pair repetitive sequence specific for Neisseria gonorrhoeae and Neisseria meningitidis genomic DNA , 1986, Journal of bacteriology.

[36]  T. Meyer,et al.  IgA protease of Neisseria gonorrhoeae: isolation and characterization of the gene and its extracellular product. , 1984, The EMBO journal.

[37]  J. Daly,et al.  Gonococci with mutations to low-level penicillin resistance exhibit increased sensitivity to the oxygen-independent bactericidal activity of human polymorphonuclear leukocyte granule extracts , 1982, Infection and immunity.

[38]  I. Nachamkin,et al.  Monoclonal antibodies against Neisseria gonorrhoeae: production of antibodies directed against a strain-specific cell surface antigen , 1981, Infection and immunity.

[39]  F. Young,et al.  Stability of pathogenic colony types of Neisseria gonorrhoeae in liquid culture by using the parameters of colonial morphology and deoxyribonucleic acid transformation , 1975, Journal of clinical microbiology.

[40]  Douglas S. Kellogg,et al.  NEISSERIA GONORRHOEAE I , 1963, Journal of bacteriology.