Gas Diffusion, Energy Transport, and Thermal Accommodation in Single‐Walled Carbon Nanotube Aerogels

The thermal conductivity of gas‐permeated single‐walled carbon nanotube (SWCNT) aerogel (8 kg m−3 density, 0.0061 volume fraction) is measured experimentally and modeled using mesoscale and atomistic simulations. Despite the high thermal conductivity of isolated SWCNTs, the thermal conductivity of the evacuated aerogel is 0.025 ± 0.010 W m−1 K−1 at a temperature of 300 K. This very low value is a result of the high porosity and the low interface thermal conductance at the tube–tube junctions (estimated as 12 pW K−1). Thermal conductivity measurements and analysis of the gas‐permeated aerogel (H2, He, Ne, N2, and Ar) show that gas molecules transport energy over length scales hundreds of times larger than the diameters of the pores in the aerogel. It is hypothesized that inefficient energy exchange between gas molecules and SWCNTs gives the permeating molecules a memory of their prior collisions. Low gas‐SWCNT accommodation coefficients predicted by molecular dynamics simulations support this hypothesis. Amplified energy transport length scales resulting from low gas accommodation are a general feature of CNT‐based nanoporous materials.

[1]  Li Shi,et al.  Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. , 2012, Nano letters.

[2]  Yan Zhang,et al.  Templated Growth of Covalently Bonded Three‐Dimensional Carbon Nanotube Networks Originated from Graphene , 2012, Advanced materials.

[3]  D. Zhao,et al.  Carbon Materials for Chemical Capacitive Energy Storage , 2011, Advanced materials.

[4]  S. Cronin,et al.  Direct observation of heat dissipation in individual suspended carbon nanotubes using a two-laser technique , 2011 .

[5]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[6]  Mohammad F. Islam,et al.  Single‐Walled Carbon Nanotube Aerogel‐Based Elastic Conductors , 2011, Advanced materials.

[7]  Scott N. Schiffres,et al.  Improved 3-omega measurement of thermal conductivity in liquid, gases, and powders using a metal-coated optical fiber. , 2011, The Review of scientific instruments.

[8]  Hui‐Ming Cheng,et al.  Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. , 2011, Nature materials.

[9]  G. Seifert,et al.  Packings of Carbon Nanotubes – New Materials for Hydrogen Storage , 2011, Advanced materials.

[10]  Yury Gogotsi,et al.  Carbide‐Derived Carbons – From Porous Networks to Nanotubes and Graphene , 2011 .

[11]  S. Cronin,et al.  The effect of gas environment on electrical heating in suspended carbon nanotubes , 2010 .

[12]  K. Hirao,et al.  Selective Formation and Efficient Photocurrent Generation of [70]Fullerene–Single‐Walled Carbon Nanotube Composites , 2010, Advances in Materials.

[13]  Yi Jia,et al.  Soft, highly conductive nanotube sponges and composites with controlled compressibility. , 2010, ACS nano.

[14]  Chen Feng,et al.  Flexible, Stretchable, Transparent Conducting Films Made from Superaligned Carbon Nanotubes , 2010 .

[15]  Deyu Li,et al.  Contact thermal resistance between individual multiwall carbon nanotubes , 2010 .

[16]  F Cleri,et al.  Turning carbon nanotubes from exceptional heat conductors into insulators. , 2009, Physical review letters.

[17]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[18]  L. Dao,et al.  New Class of Carbon‐Nanotube Aerogel Electrodes for Electrochemical Power Sources , 2008 .

[19]  Young Hee Lee,et al.  Optical absorption spectroscopy for determining carbon nanotube concentration in solution , 2007 .

[20]  D. Milkie,et al.  Carbon Nanotube Aerogels , 2007 .

[21]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[22]  T. Choi,et al.  Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method , 2006 .

[23]  A. Yodh,et al.  Structure of semidilute single-wall carbon nanotube suspensions and gels. , 2006, Nano letters.

[24]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[25]  Huaqing Xie,et al.  Measuring the thermal conductivity of a single carbon nanotube. , 2005, Physical review letters.

[26]  Siegmar Roth,et al.  Hydrogen adsorption in different carbon nanostructures , 2005 .

[27]  A. Majumdar,et al.  Thermal conductance and thermopower of an individual single-wall carbon nanotube. , 2005, Nano letters.

[28]  A. Yodh,et al.  Electronic devices based on purified carbon nanotubes grown by high-pressure decomposition of carbon monoxide , 2005, Nature materials.

[29]  D. Sholl,et al.  Diffusivities of Ar and Ne in Carbon Nanotubes , 2003 .

[30]  Arjun G. Yodh,et al.  High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water , 2003 .

[31]  F. Darkrim,et al.  Review of hydrogen storage by adsorption in carbon nanotubes , 2002 .

[32]  A. Rousset,et al.  Specific surface area of carbon nanotubes and bundles of carbon nanotubes , 2001 .

[33]  S. Brantley,et al.  Surface area and porosity of primary silicate minerals , 2000 .

[34]  Fischer,et al.  Quantized phonon spectrum of single-wall carbon nanotubes , 2000, Science.

[35]  Thomas Frauenheim,et al.  Hydrogen adsorption and storage in carbon nanotubes , 2000 .

[36]  Young Hee Lee,et al.  Hydrogen storage in single-walled carbon nanotubes , 2000 .

[37]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[38]  William A. Goddard,et al.  Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes , 1998 .

[39]  F. Schwertfeger,et al.  Applications for silica aerogel products , 1998 .

[40]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[41]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[42]  Seungmin Lee,et al.  Heat transport in thin dielectric films , 1997 .

[43]  Bobby G. Sumpter,et al.  Dynamics of fluid flow inside carbon nanotubes , 1996 .

[44]  A. Hunt,et al.  Thin-film-heater thermal conductivity apparatus and measurement of thermal conductivity of silica aerogel , 1996 .

[45]  J. Jeans An Introduction to the Kinetic Theory of Gases: Index of Subjects , 2009 .

[46]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[47]  R. Pekala,et al.  Thermal Conductivity of Monolithic Organic Aerogels , 1992, Science.

[48]  D. Friend,et al.  Thermal conductivity surface of argon: A fresh analysis , 1991 .

[49]  T. Tokunaga Porous media gas diffusivity from a free path distribution model , 1985 .

[50]  Kent S. Udell,et al.  Heat transfer in porous media considering phase change and capillarity—the heat pipe effect , 1985 .

[51]  L. R. Glicksman,et al.  A Basic Study of Heat Transfer Through Foam Insulation , 1984 .

[52]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[53]  A. G. Caldwell,et al.  Thermal Conductivity of Silica Aërogel , 1934 .

[54]  J. Shiomi,et al.  Thermal Conductivity Measurement of Vertically Aligned Single-Walled Carbon Nanotubes Utilizing Temperature Dependence of Raman Scattering , 2011 .

[55]  F. Goodman,et al.  Thermal accommodation coefficients , 1980 .