Tight Bounds on the Rényi Entropy via Majorization with Applications to Guessing and Compression

This paper provides tight bounds on the Rényi entropy of a function of a discrete random variable with a finite number of possible values, where the considered function is not one to one. To that end, a tight lower bound on the Rényi entropy of a discrete random variable with a finite support is derived as a function of the size of the support, and the ratio of the maximal to minimal probability masses. This work was inspired by the recently published paper by Cicalese et al., which is focused on the Shannon entropy, and it strengthens and generalizes the results of that paper to Rényi entropies of arbitrary positive orders. In view of these generalized bounds and the works by Arikan and Campbell, non-asymptotic bounds are derived for guessing moments and lossless data compression of discrete memoryless sources.

[1]  Sergio Verdú,et al.  On the Interplay Between Conditional Entropy and Error Probability , 2010, IEEE Transactions on Information Theory.

[2]  Klaudia Frankfurter Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[3]  Serdar Boztas,et al.  Comments on 'An inequality on guessing and its application to sequential decoding' , 1997, IEEE Trans. Inf. Theory.

[4]  Muriel Médard,et al.  Guessing with limited memory , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[5]  Neri Merhav,et al.  Guessing Subject to Distortion , 1998, IEEE Trans. Inf. Theory.

[6]  Raymond W. Yeung,et al.  The Interplay Between Entropy and Variational Distance , 2007, IEEE Transactions on Information Theory.

[7]  L. Campbell,et al.  Definition of entropy by means of a coding problem , 1966 .

[8]  G. Crooks On Measures of Entropy and Information , 2015 .

[9]  Sergio Verdú,et al.  Rejection Sampling and Noncausal Sampling Under Moment Constraints , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[10]  Sergio Verdú,et al.  Optimal Lossless Data Compression: Non-Asymptotics and Asymptotics , 2014, IEEE Transactions on Information Theory.

[11]  Luisa Gargano,et al.  Information theoretic measures of distances and their econometric applications , 2013, 2013 IEEE International Symposium on Information Theory.

[12]  Imre Csiszár Generalized cutoff rates and Renyi's information measures , 1995, IEEE Trans. Inf. Theory.

[13]  Mark M. Wilde,et al.  Strong converse theorems using Rényi entropies , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[14]  Sergio Verdú,et al.  Variable-length lossy compression and channel coding: Non-asymptotic converses via cumulant generating functions , 2014, 2014 IEEE International Symposium on Information Theory.

[15]  Lukasz Rudnicki,et al.  Majorization entropic uncertainty relations , 2013, ArXiv.

[16]  Venkat Anantharam,et al.  Optimal sequences and sum capacity of synchronous CDMA systems , 1999, IEEE Trans. Inf. Theory.

[17]  Suguru Arimoto,et al.  On the converse to the coding theorem for discrete memoryless channels (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[18]  Igal Sason On the Rényi Divergence, Joint Range of Relative Entropies, and a Channel Coding Theorem , 2016, IEEE Transactions on Information Theory.

[19]  Masahito Hayashi,et al.  Operational interpretation of Rényi conditional mutual information via composite hypothesis testing against Markov distributions , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[20]  Robert J. McEliece,et al.  An inequality on entropy , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[21]  Suhas N. Diggavi,et al.  The effect of bias on the guesswork of hash functions , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[22]  Aydin Sezgin,et al.  Applications of Majorization Theory in Space-Time Cooperative Communications , 2010 .

[23]  Milán Mosonyi,et al.  Quantum Hypothesis Testing and the Operational Interpretation of the Quantum Rényi Relative Entropies , 2013, ArXiv.

[24]  Neri Merhav,et al.  Joint Source-Channel Coding and Guessing with Application to Sequential Decoding , 1998, IEEE Trans. Inf. Theory.

[25]  Guojun Gan,et al.  Data Clustering: Theory, Algorithms, and Applications (ASA-SIAM Series on Statistics and Applied Probability) , 2007 .

[26]  Rajesh Sundaresan,et al.  The Shannon Cipher System With a Guessing Wiretapper: General Sources , 2011, IEEE Transactions on Information Theory.

[27]  Vincent Y. F. Tan,et al.  Analysis of Remaining Uncertainties and Exponents Under Various Conditional Rényi Entropies , 2016, IEEE Transactions on Information Theory.

[28]  Harry Joe,et al.  Majorization, entropy and paired comparisons , 1988 .

[29]  Rajesh Sundaresan,et al.  DRDO – IISc Programme on Advanced Research in Mathematical Engineering Guessing Based On Length Functions ( TR-PME-2007-02 ) by , 2007 .

[30]  Sergio Verdú,et al.  Improved Bounds on Lossless Source Coding and Guessing Moments via Rényi Measures , 2018, IEEE Transactions on Information Theory.

[31]  Ofer Shayevitz,et al.  Reducing Guesswork via an Unreliable Oracle , 2018, IEEE Transactions on Information Theory.

[32]  Sergio Verdú,et al.  Convexity/concavity of renyi entropy and α-mutual information , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[33]  Marco Dalai,et al.  Lower Bounds on the Probability of Error for Classical and Classical-Quantum Channels , 2012, IEEE Transactions on Information Theory.

[34]  B. Arnold,et al.  Majorization and the Lorenz Order with Applications in Applied Mathematics and Economics , 2018 .

[35]  Frederick Jelinek,et al.  On variable-length-to-block coding , 1972, IEEE Trans. Inf. Theory.

[36]  Ofer Shayevitz,et al.  On Rényi measures and hypothesis testing , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[37]  Holger Boche,et al.  Majorization and Matrix-Monotone Functions in Wireless Communications , 2007, Found. Trends Commun. Inf. Theory.

[38]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[39]  J. Massey Guessing and entropy , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[40]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[41]  Hazer Inaltekin,et al.  Optimality of Binary Power Control for the Single Cell Uplink , 2012, IEEE Transactions on Information Theory.

[42]  B. Arnold Majorization: Here, There and Everywhere , 2007, 0801.4221.

[43]  Amos Lapidoth,et al.  Distributed task encoding , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[44]  Ugo Vaccaro,et al.  Bounding the average length of optimal source codes via majorization theory , 2004, IEEE Transactions on Information Theory.

[45]  Vincent Y. F. Tan,et al.  Rényi Resolvability and Its Applications to the Wiretap Channel , 2019, IEEE Trans. Inf. Theory.

[46]  Hans S. Witsenhausen Some aspects of convexity useful in information theory , 1980, IEEE Trans. Inf. Theory.

[47]  Sergio Verdú,et al.  Cumulant generating function of codeword lengths in optimal lossless compression , 2014, 2014 IEEE International Symposium on Information Theory.

[48]  Harry Joe,et al.  Majorization and divergence , 1990 .

[49]  Thomas M. Cover,et al.  Elements of Information Theory: Cover/Elements of Information Theory, Second Edition , 2005 .

[50]  Ken R. Duffy,et al.  Guesswork, Large Deviations, and Shannon Entropy , 2012, IEEE Transactions on Information Theory.

[51]  Slavko Simic Jensen's inequality and new entropy bounds , 2009, Appl. Math. Lett..

[52]  Alfredo De Santis,et al.  Bounds on entropy in a guessing game , 2001, IEEE Trans. Inf. Theory.

[53]  Venkat Anantharam,et al.  Optimal sequences for CDMA under colored noise: A Schur-saddle function property , 2002, IEEE Trans. Inf. Theory.

[54]  Hiroki Koga Characterization of the smooth Rényi Entropy Using Majorization , 2013, 2013 IEEE Information Theory Workshop (ITW).

[55]  Yi Jiang,et al.  MIMO Transceiver Design via Majorization Theory , 2007, Found. Trends Commun. Inf. Theory.

[56]  Amos Lapidoth,et al.  Encoding Tasks and Rényi Entropy , 2014, IEEE Transactions on Information Theory.

[57]  C. E. Pfister,et al.  Renyi entropy, guesswork moments, and large deviations , 2004, IEEE Transactions on Information Theory.

[58]  Peter Harremoës,et al.  Rényi Divergence and Kullback-Leibler Divergence , 2012, IEEE Transactions on Information Theory.

[59]  L. L. Campbell,et al.  A Coding Theorem and Rényi's Entropy , 1965, Inf. Control..

[60]  Ugo Vaccaro,et al.  Maximum Entropy Interval Aggregations , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[61]  Amos Lapidoth,et al.  Guessing Attacks on Distributed-Storage Systems , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[62]  John Thompson,et al.  Cooperative Communications for improved wireless network transmission: framework for virtual antenna array applications , 2009 .

[63]  Vincent Y. F. Tan,et al.  Rényi Resolvability and Its Applications to the Wiretap Channel , 2017, IEEE Transactions on Information Theory.

[64]  Jaikumar Radhakrishnan,et al.  The Communication Complexity of Correlation , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[65]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[66]  Rajesh Sundaresan,et al.  Guessing Revisited: A Large Deviations Approach , 2010, IEEE Transactions on Information Theory.

[67]  J. Steele The Cauchy–Schwarz Master Class: References , 2004 .

[68]  Shigeaki Kuzuoka On the smooth Rényi entropy and variable-length source coding allowing errors , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[69]  Vincent Y. F. Tan,et al.  Equivocations, Exponents, and Second-Order Coding Rates Under Various Rényi Information Measures , 2017, IEEE Transactions on Information Theory.

[70]  Neri Merhav,et al.  The Shannon cipher system with a guessing wiretapper , 1999, IEEE Trans. Inf. Theory.

[71]  Muriel Médard,et al.  Centralized vs decentralized multi-agent guesswork , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[72]  Erdal Arikan An inequality on guessing and its application to sequential decoding , 1996, IEEE Trans. Inf. Theory.

[73]  Shigeaki Kuzuoka,et al.  On the Conditional Smooth Rényi Entropy and its Applications in Guessing and Source Coding , 2018, IEEE Transactions on Information Theory.

[74]  Rajesh Sundaresan,et al.  Guessing Under Source Uncertainty , 2006, IEEE Transactions on Information Theory.

[75]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[76]  S. Verdú,et al.  Arimoto channel coding converse and Rényi divergence , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[77]  Vincent Y. F. Tan,et al.  Wyner’s Common Information Under Rényi Divergence Measures , 2017, IEEE Transactions on Information Theory.

[78]  Shuhong Wang,et al.  Schur-Convexity on Generalized Information Entropy and Its Applications , 2011, ICICA.

[79]  Sergio Verdú,et al.  Arimoto–Rényi Conditional Entropy and Bayesian $M$ -Ary Hypothesis Testing , 2017, IEEE Transactions on Information Theory.

[80]  Charles R. Johnson,et al.  Matrix Analysis, 2nd Ed , 2012 .

[81]  Himanshu Tyagi,et al.  Coding theorems using Rényi information measures , 2017, 2017 Twenty-third National Conference on Communications (NCC).

[82]  David Tse,et al.  Optimal sequences, power control, and user capacity of synchronous CDMA systems with linear MMSE multiuser receivers , 1999, IEEE Trans. Inf. Theory.

[83]  M. Ben-Bassat,et al.  Renyi's entropy and the probability of error , 1978, IEEE Trans. Inf. Theory.

[84]  Ugo Vaccaro,et al.  Bounds on the Entropy of a Function of a Random Variable and Their Applications , 2017, IEEE Transactions on Information Theory.

[85]  I. Csiszár Generalized Cutoff Rates and Renyi's Information Measures , 1993, Proceedings. IEEE International Symposium on Information Theory.