Predictability of extreme values in geophysical models

Extreme value theory in deterministic systems is concerned with unlikely large (or small) values of an observable evaluated along evolutions of the system. In this paper we study the finite-time predictability of extreme values, such as convection, energy, and wind speeds, in three geophysical models. We study whether finite-time Lyapunov exponents are larger or smaller for initial conditions leading to extremes. General statements on whether extreme values are better or less predictable are not possible: the predictability of extreme values depends on the observable, the attractor of the system, and the prediction lead time.

[1]  D. Swart Analysis of a six-component atmospheric spectral model: chaos, predictability and vacillation , 1989 .

[2]  Y. Lai EXTREME FLUCTUATIONS OF FINITE-TIME LYAPUNOV EXPONENTS IN CHAOTIC SYSTEMS , 2007 .

[3]  T. Palmer,et al.  Singular Vectors, Metrics, and Adaptive Observations. , 1998 .

[4]  Gert Vegter,et al.  Subordinate Šil'nikov bifurcations near some singularities of vector fields having low codimension , 1984, Ergodic Theory and Dynamical Systems.

[5]  David B. Stephenson,et al.  Serial Clustering of Extratropical Cyclones , 2006 .

[6]  Tim N. Palmer,et al.  Ensemble forecasting , 2008, J. Comput. Phys..

[7]  Chinmaya Gupta,et al.  Extreme-value distributions for some classes of non-uniformly partially hyperbolic dynamical systems , 2008, Ergodic Theory and Dynamical Systems.

[8]  Valerio Lucarini,et al.  Extreme Value Statistics of the Total Energy in an Intermediate Complexity Model of the Mid-latitude Atmospheric Jet. Part I: Stationary case , 2006 .

[9]  Neill E. Bowler,et al.  The MOGREPS short‐range ensemble prediction system , 2008 .

[10]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[11]  Jon M. Nese Quantifying local predictability in phase space , 1989 .

[12]  Douglas W. Nychka,et al.  Chaos with Confidence: Asymptotics and Applications of Local Lyapunov Exponents , 1997 .

[13]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[14]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[15]  Nicole A. Lazar,et al.  Statistics of Extremes: Theory and Applications , 2005, Technometrics.

[16]  David B. Stephenson,et al.  Serial clustering of intense European storms , 2009 .

[17]  Henry D. I. Abarbanel,et al.  Variation of Lyapunov exponents on a strange attractor , 1991 .

[18]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[19]  Valerio Lucarini,et al.  Extreme Value Statistics of the Total Energy in an Intermediate-Complexity Model of the Midlatitude Atmospheric Jet. Part II: Trend Detection and Assessment , 2006 .

[20]  Ramakrishna Ramaswamy,et al.  Non-Gaussian Fluctuations of Local Lyapunov Exponents at Intermittency , 2003 .

[21]  Henk A. Dijkstra,et al.  New nonlinear mechanisms of midlatitude atmospheric low-frequency variability , 2010 .

[22]  Hendrik Broer,et al.  Dynamical systems modeling of low-frequency variability in low-order atmospheric models , 2008 .

[23]  Ferdinand Verhulst,et al.  A Mechanism for Atmospheric Regime Behavior , 2004 .

[24]  Luigi Palatella,et al.  Nonlinear Processes in Geophysics On the Kalman Filter error covariance collapse into the unstable subspace , 2011 .

[25]  J. Charney,et al.  Multiple Flow Equilibria in the Atmosphere and Blocking , 1979 .

[26]  Joseph P. Zbilut,et al.  Early warning detection of runaway initiation using non-linear approaches , 2005 .

[27]  Roberto Buizza,et al.  The Singular-Vector Structure of the Atmospheric Global Circulation , 1995 .

[28]  Ulrike Feudel,et al.  under a Creative Commons License. Nonlinear Processes in Geophysics Growth of finite errors in ensemble prediction , 2022 .

[29]  Jürgen Kurths,et al.  Localized Lyapunov exponents and the prediction of predictability , 2000 .

[30]  Jürgen Kurths,et al.  The bootstrap and Lyapunov exponents in deterministic chaos , 1999 .

[31]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[32]  Andrei Török,et al.  Extreme value theory for non-uniformly expanding dynamical systems , 2012 .

[33]  Grégory Faye Dynamical Systems and Chaos , 2012 .

[34]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[35]  Holger Rootzén,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[36]  Ana Cristina Moreira Freitas,et al.  Extreme Value Laws in Dynamical Systems for Non-smooth Observations , 2010, 1006.3276.

[37]  George Haiman,et al.  Extreme values of the tent map process , 2003 .

[38]  H. Swart,et al.  Low-order spectral models of the atmospheric circulation: A survey , 1988 .

[39]  A. Prasad,et al.  Characteristic distributions of finite-time Lyapunov exponents. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Alef E. Sterk,et al.  Extreme value laws in dynamical systems under physical observables , 2011, 1107.5673.

[41]  Eric Vanden-Eijnden,et al.  Subgrid-Scale Parameterization with Conditional Markov Chains , 2008 .

[42]  Jorge Milhazes Freitas,et al.  On the link between dependence and independence in extreme value theory for dynamical systems , 2008 .