High-efficiency Luminescent Solar Concentrators based on Composition-tunable Eco-friendly Core/shell Quantum Dots

[1]  Zhiming M. Wang,et al.  Rational design of eco-friendly Mn-doped nonstoichiometric CuInSe/ZnSe core/shell quantum dots for boosted photoelectrochemical efficiency , 2022, Nano Research.

[2]  A. Vomiero,et al.  Synergistic tailoring of band structure and charge carrier extraction in “green” core/shell quantum dots for highly efficient solar energy conversion , 2022, Chemical Engineering Journal.

[3]  Zhiming M. Wang,et al.  Tailoring the optoelectronic properties of eco‐friendly CuGaS 2 / ZnSe core/shell quantum dots for boosted photoelectrochemical solar hydrogen production , 2022, EcoMat.

[4]  Miles C. Barr,et al.  Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance , 2022, Joule.

[5]  Zhiming M. Wang,et al.  Rational design of colloidal AgGaS2/CdSeS core/shell quantum dots for solar energy conversion and light detection , 2021 .

[6]  P. Sonar,et al.  Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges , 2021, Advanced Energy Materials.

[7]  P. Ekins,et al.  Unextractable fossil fuels in a 1.5 °C world , 2021, Nature.

[8]  Zhiming M. Wang,et al.  Role of Copper Doping in Heavy Metal‐Free InP/ZnSe Core/Shell Quantum Dots for Highly Efficient and Stable Photoelectrochemical Cell , 2021, Advanced Energy Materials.

[9]  F. Jiang,et al.  Cu-Deficient CuInSe Quantum Dots for “Turn-On” Detection of Adenosine Triphosphate in Living Cells , 2021 .

[10]  U. Resch‐Genger,et al.  Efficient Luminescent Solar Concentrators Based on Environmentally Friendly Cd‐Free Ternary AIS/ZnS Quantum Dots , 2021, Advanced Optical Materials.

[11]  C. Dee,et al.  Tuning the composition of heavy metal-free quaternary quantum dots for improved photoelectrochemical performance , 2021 .

[12]  P. Dutta,et al.  Electronic Structure Insights into the Tunable Luminescence of CuAlxFe1–xS2/ZnS Nanocrystals , 2021 .

[13]  H. Ade,et al.  A molecular interaction–diffusion framework for predicting organic solar cell stability , 2021, Nature Materials.

[14]  N. Park Green solvent for perovskite solar cell production , 2020, Nature Sustainability.

[15]  I. Papakonstantinou,et al.  The Hidden Potential of Luminescent Solar Concentrators , 2020, Advanced Energy Materials.

[16]  Haiguang Zhao,et al.  Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators , 2020, Energy & Environmental Science.

[17]  Zhiming M. Wang,et al.  Boosting the performance of eco-friendly quantum dots-based photoelectrochemical cells via effective surface passivation , 2020 .

[18]  Zhiming M. Wang,et al.  Environmentally friendly Mn-alloyed core/shell quantum dots for high-efficiency photoelectrochemical cells , 2020 .

[19]  Haiguang Zhao,et al.  Role of refractive index in highly efficient laminated luminescent solar concentrators , 2020 .

[20]  M. Bawendi,et al.  Blue Light Emitting Defective Nanocrystals Composed of Earth-Abundant Elements. , 2019, Angewandte Chemie.

[21]  Mumtaz Ali,et al.  Tandem structured luminescent solar concentrator based on inorganic carbon quantum dots and organic dyes , 2019, Solar Energy.

[22]  J. Hwang,et al.  High-efficiency blue and white electroluminescent devices based on non-Cd I−III−VI quantum dots , 2019, Nano Energy.

[23]  Haiguang Zhao Refractive index dependent optical property of carbon dots integrated luminescent solar concentrators , 2019, Journal of Luminescence.

[24]  Haiguang Zhao,et al.  High efficiency sandwich structure luminescent solar concentrators based on colloidal quantum dots , 2019, Nano Energy.

[25]  Haiguang Zhao,et al.  Zero‐Dimensional Perovskite Nanocrystals for Efficient Luminescent Solar Concentrators , 2019, Advanced Functional Materials.

[26]  M. Wasielewski,et al.  Advances in solar energy conversion. , 2019, Chemical Society reviews.

[27]  David Cahen,et al.  Photovoltaic solar cell technologies: analysing the state of the art , 2019, Nature Reviews Materials.

[28]  Lide Zhang,et al.  Synthesis of green-to-red-emitting Cu-Ga-S/ZnS core/shell quantum dots for application in white light-emitting diodes , 2019, Journal of Luminescence.

[29]  Lide Zhang,et al.  Synthesis and tunable emission of Ga2S3 quantum dots , 2019, Materials Letters.

[30]  Zhiming M. Wang,et al.  Eco‐Friendly Colloidal Quantum Dot‐Based Luminescent Solar Concentrators , 2019, Advanced science.

[31]  Jia Zhu,et al.  Solar-driven interfacial evaporation , 2018, Nature Energy.

[32]  Xiujian Zhao,et al.  Carbon dots based nanocomposite thin film for highly efficient luminescent solar concentrators , 2018, Organic Electronics.

[33]  Raffaello Mazzaro,et al.  The Renaissance of Luminescent Solar Concentrators: The Role of Inorganic Nanomaterials , 2018, Advanced Energy Materials.

[34]  Zhiming M. Wang,et al.  Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots , 2018, Nano Energy.

[35]  F. Rosei,et al.  Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. , 2018, Chemical Society reviews.

[36]  M. Al‐Assiri,et al.  One‐Pot Gram‐Scale, Eco‐Friendly, and Cost‐Effective Synthesis of CuGaS2/ZnS Nanocrystals as Efficient UV‐Harvesting Down‐Converter for Photovoltaics , 2018, Advanced Energy Materials.

[37]  S. Mukherjee,et al.  Efficient Photosynthesis of Organics from Aqueous Bicarbonate Ions by Quantum Dots Using Visible Light , 2018, ACS Energy Letters.

[38]  P. Kamat,et al.  Indium-Rich AgInS2–ZnS Quantum Dots—Ag-/Zn-Dependent Photophysics and Photovoltaics , 2018, The Journal of Physical Chemistry C.

[39]  Kaifeng Wu,et al.  Tandem luminescent solar concentrators based on engineered quantum dots , 2018 .

[40]  N. Makarov,et al.  High-Performance CuInS2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows , 2018 .

[41]  Wallace W. H. Wong,et al.  Emissive Molecular Aggregates and Energy Migration in Luminescent Solar Concentrators. , 2017, Accounts of chemical research.

[42]  Heesun Yang,et al.  White Electroluminescent Lighting Device Based on a Single Quantum Dot Emitter , 2016, Advanced materials.

[43]  Heesun Yang,et al.  Synthesis of highly white-fluorescent Cu-Ga-S quantum dots for solid-state lighting devices. , 2016, Chemical communications.

[44]  Sergio Brovelli,et al.  Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix , 2014, Nature Photonics.

[45]  Se Jin Park,et al.  Solution processed high band‐gap CuInGaS2 thin film for solar cell applications , 2014 .

[46]  T. Cui,et al.  Temperature-Dependent Photoluminescence of ZnCuInS/ZnSe/ZnS Quantum Dots , 2013 .

[47]  Zhan'ao Tan,et al.  Highly Emissive and Color‐Tunable CuInS2‐Based Colloidal Semiconductor Nanocrystals: Off‐Stoichiometry Effects and Improved Electroluminescence Performance , 2012 .

[48]  Heesun Yang,et al.  Efficient White-Light-Emitting Diodes Fabricated from Highly Fluorescent Copper Indium Sulfide Core/Shell Quantum Dots , 2012 .

[49]  Fuqiang Huang,et al.  Improved Thermoelectric Properties of Cu‐Doped Quaternary Chalcogenides of Cu2CdSnSe4 , 2009 .

[50]  D. Grainger,et al.  X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces , 1996 .

[51]  J. Lambe,et al.  Luminescent greenhouse collector for solar radiation. , 1976, Applied optics.

[52]  Xiujian Zhao,et al.  Highly efficient tandem luminescent solar concentrators based on eco-friendly copper iodide based hybrid nanoparticles and carbon dots , 2022, Energy & Environmental Science.

[53]  T. Isobe,et al.  Bandgap-Tuned Fluorescent CuGaS2/ZnS Core/Shell Quantum Dots for Photovoltaic Applications , 2022, Journal of Materials Chemistry C.

[54]  Yuhan Wu,et al.  Solid-state photoluminescent silicone-carbon dots/dendrimer composites for highly efficient luminescent solar concentrators , 2021 .

[55]  Zhiming M. Wang,et al.  Tailored Near-infrared Colloidal Heterostructured Quantum Dots for High Performance Photoelectrochemical Cells , 2019 .

[56]  Zhiming M. Wang,et al.  Near‐Infrared, Heavy Metal‐Free Colloidal “Giant” Core/Shell Quantum Dots , 2018 .

[57]  Paul P. C. Verbunt,et al.  Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment , 2012 .