The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation

Local control of mRNA translation has been proposed as a mechanism for regulating synapse-specific plasticity associated with long-term memory. We show here that glomerulus-selective plasticity of Drosophila multiglomerular local interneurons observed during long-term olfactory habituation (LTH) requires the Ataxin-2 protein (Atx2) to function in uniglomerular projection neurons (PNs) postsynaptic to local interneurons (LNs). PN-selective knockdown of Atx2 selectively blocks LTH to odorants to which the PN responds and in addition selectively blocks LTH-associated structural and functional plasticity in odorant-responsive glomeruli. Atx2 has been shown previously to bind DEAD box helicases of the Me31B family, proteins associated with Argonaute (Ago) and microRNA (miRNA) function. Robust transdominant interactions of atx2 with me31B and ago1 indicate that Atx2 functions with miRNA-pathway components for LTH and associated synaptic plasticity. Further direct experiments show that Atx2 is required for miRNA-mediated repression of several translational reporters in vivo. Together, these observations (i) show that Atx2 and miRNA components regulate synapse-specific long-term plasticity in vivo; (ii) identify Atx2 as a component of the miRNA pathway; and (iii) provide insight into the biological function of Atx2 that is of potential relevance to spinocerebellar ataxia and neurodegenerative disease.

[1]  Thomas Lengauer,et al.  An integrative approach to gain insights into the cellular function of human ataxin-2. , 2005, Journal of molecular biology.

[2]  Barry J Dickson,et al.  Function of the Drosophila CPEB protein Orb2 in long-term courtship memory , 2007, Nature Neuroscience.

[3]  Bassem A. Hassan,et al.  Recombineering-mediated tagging of Drosophila genomic constructs for in vivo localization and acute protein inactivation , 2008, Nucleic acids research.

[4]  Akira Ishizuka,et al.  Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. , 2004, Genes & development.

[5]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[6]  T. Rana,et al.  Translation Repression in Human Cells by MicroRNA-Induced Gene Silencing Requires RCK/p54 , 2006, PLoS biology.

[7]  C. Novina,et al.  MicroRNA-repressed mRNAs contain 40S but not 60S components , 2008, Proceedings of the National Academy of Sciences.

[8]  E. Izaurralde,et al.  GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay , 2008, Nature Structural &Molecular Biology.

[9]  U. Frey,et al.  Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation , 1998, Trends in Neurosciences.

[10]  Anthony K. L. Leung,et al.  Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules , 2006, Proceedings of the National Academy of Sciences.

[11]  E. Izaurralde,et al.  Gene silencing by microRNAs: contributions of translational repression and mRNA decay , 2011, Nature Reviews Genetics.

[12]  Ann-Shyn Chiang,et al.  The staufen/pumilio Pathway Is Involved in Drosophila Long-Term Memory , 2003, Current Biology.

[13]  R. Parker,et al.  CGH-1 and the control of maternal mRNAs. , 2009, Trends in cell biology.

[14]  Elisa Izaurralde,et al.  Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing , 2010, The EMBO journal.

[15]  M. Ramaswami,et al.  P-Body Components, microRNA Regulation, and Synaptic Plasticity , 2007, TheScientificWorldJournal.

[16]  E. Kandel,et al.  A Transient, Neuron-Wide Form of CREB-Mediated Long-Term Facilitation Can Be Stabilized at Specific Synapses by Local Protein Synthesis , 1999, Cell.

[17]  E. Izaurralde,et al.  P bodies: at the crossroads of post-transcriptional pathways , 2007, Nature Reviews Molecular Cell Biology.

[18]  U. Rüb,et al.  Spinocerebellar ataxia 2 (SCA2) , 2008, The Cerebellum.

[19]  Kei Ito,et al.  Activity-Dependent Plasticity in an Olfactory Circuit , 2007, Neuron.

[20]  A. Shyu,et al.  Ago-TNRC6 complex triggers microRNA-mediated mRNA decay by promoting biphasic deadenylation followed by decapping , 2009, Nature Structural &Molecular Biology.

[21]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[22]  K. Martin,et al.  Synaptic tagging — who's it? , 2002, Nature Reviews Neuroscience.

[23]  Phillip D. Zamore,et al.  Sorting of Drosophila Small Silencing RNAs , 2007, Cell.

[24]  L. Luo,et al.  MicroRNA Processing Pathway Regulates Olfactory Neuron Morphogenesis , 2008, Current Biology.

[25]  Florence Friggi-Grelin,et al.  Control of Antagonistic Components of the Hedgehog Signaling Pathway by microRNAs in Drosophila , 2008, Genetics.

[26]  E. Klann,et al.  Making synaptic plasticity and memory last: mechanisms of translational regulation. , 2009, Genes & development.

[27]  Y. Tomari,et al.  Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression. , 2009, Molecular cell.

[28]  R. Levine,et al.  Staufen- and FMRP-Containing Neuronal RNPs Are Structurally and Functionally Related to Somatic P Bodies , 2006, Neuron.

[29]  Tim Tully,et al.  Excess protein synthesis in Drosophila Fragile X mutants impairs long-term memory , 2008, Nature Neuroscience.

[30]  L. Pallanck,et al.  A Drosophila homolog of the polyglutamine disease gene SCA2 is a dosage-sensitive regulator of actin filament formation. , 2002, Genetics.

[31]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[32]  D. Glanzman,et al.  Common Mechanisms of Synaptic Plasticity in Vertebrates and Invertebrates , 2010, Current Biology.

[33]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[34]  N. Sonenberg,et al.  Pervasive and cooperative deadenylation of 3'UTRs by embryonic microRNA families. , 2010, Molecular cell.

[35]  David L. Glanzman,et al.  Postsynaptic Regulation of Long-Term Facilitation in Aplysia , 2008, Current Biology.

[36]  S. Kunes,et al.  Synaptic Protein Synthesis Associated with Memory Is Regulated by the RISC Pathway in Drosophila , 2006, Cell.

[37]  G. Schratt,et al.  MicroRNAs in neuronal development, function and dysfunction , 2010, Brain Research.

[38]  Subhabrata Sanyal,et al.  Plasticity of local GABAergic interneurons drives olfactory habituation , 2011, Proceedings of the National Academy of Sciences.

[39]  N. Bonini,et al.  Polyglutamine Genes Interact to Modulate the Severity and Progression of Neurodegeneration in Drosophila , 2008, PLoS biology.

[40]  N. Bonini,et al.  MicroRNA pathways modulate polyglutamine-induced neurodegeneration. , 2006, Molecular cell.

[41]  H. Blau,et al.  Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies , 2005, Nature Cell Biology.

[42]  Eric R Kandel,et al.  Synaptic remodeling, synaptic growth and the storage of long-term memory in Aplysia. , 2008, Progress in brain research.

[43]  K. Kosik,et al.  A Coordinated Local Translational Control Point at the Synapse Involving Relief from Silencing and MOV10 Degradation , 2009, Neuron.

[44]  Roy Parker,et al.  P bodies and the control of mRNA translation and degradation. , 2007, Molecular cell.

[45]  J. Priess,et al.  ATX-2, the C. elegans ortholog of ataxin 2, functions in translational regulation in the germline , 2004, Development.

[46]  Yi Guo,et al.  Overlapping Functions of Argonaute Proteins in Patterning and Morphogenesis of Drosophila Embryos , 2006, PLoS genetics.

[47]  L. Pallanck,et al.  Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. , 2006, Human molecular genetics.

[48]  Sathyanarayanan V. Puthanveettil,et al.  Characterization of Small RNAs in Aplysia Reveals a Role for miR-124 in Constraining Synaptic Plasticity through CREB , 2009, Neuron.

[49]  K. Martin,et al.  Synapse- and Stimulus-Specific Local Translation During Long-Term Neuronal Plasticity , 2009, Science.

[50]  M. Wickens,et al.  GLD2 poly(A) polymerase is required for long-term memory , 2008, Proceedings of the National Academy of Sciences.

[51]  H. Lehrach,et al.  Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. , 2007, Molecular biology of the cell.

[52]  Roy Parker,et al.  P bodies promote stress granule assembly in Saccharomyces cerevisiae , 2008, The Journal of cell biology.

[53]  A. Jacobson,et al.  Positive and Negative Regulation of Poly(A) Nuclease , 2004, Molecular and Cellular Biology.

[54]  J. Yates,et al.  Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. , 2009, Molecular cell.

[55]  R. Parker,et al.  Eukaryotic stress granules: the ins and outs of translation. , 2009, Molecular cell.

[56]  Phillip D. Zamore,et al.  Drosophila microRNAs Are Sorted into Functionally Distinct Argonaute Complexes after Production by Dicer-1 , 2007, Cell.

[57]  E. Izaurralde,et al.  The Silencing Domain of GW182 Interacts with PABPC1 To Promote Translational Repression and Degradation of MicroRNA Targets and Is Required for Target Release , 2009, Molecular and Cellular Biology.

[58]  Jing W. Wang,et al.  Select Drosophila glomeruli mediate innate olfactory attraction and aversion , 2009, Nature.

[59]  E. Lai,et al.  Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. , 2009, Molecular cell.