Finite-difference time domain method for light wave propagation within liquid crystal devices

Light wave propagation within liquid crystal devices is determined by the application of an appropriate finite-difference time-domain (FDTD) method, accounting rigorously for electromagnetic wave propagation. The introduction of FDTD calculations is aimed to substitute the matrix-type solvers in cases where the stratified-medium approximation fails. Such cases are commonly encountered when a liquid crystal device exhibits variations of the director orientation along the transverse direction on the scale of the propagating optical wavelength, for instance, at pixel edges. The formulation and sample numerical application are focused on planar liquid crystal devices exhibiting bend/splay deformation.

[1]  A. Lien,et al.  Extended Jones matrix representation for the twisted nematic liquid‐crystal display at oblique incidence , 1990 .

[2]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[3]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[4]  P. Bos,et al.  The pi-Cell: A Fast Liquid-Crystal Optical-Switching Device , 1984 .

[5]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[6]  S. Teitler,et al.  Refraction in Stratified, Anisotropic Media* , 1970 .

[7]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[8]  D. W. Berreman,et al.  Optics in Stratified and Anisotropic Media: 4×4-Matrix Formulation , 1972 .

[9]  D. A. Mlynski,et al.  Faster 4 × 4 matrix method for uniaxial inhomogeneous media , 1988 .

[10]  J. Schneider,et al.  A finite-difference time-domain method applied to anisotropic material , 1993 .

[11]  Salvador García,et al.  Applicability of the PML absorbing boundary condition to dielectric anisotropic media , 1996 .

[12]  W. Fichtner,et al.  Rigorous electromagnetic simulation of liquid crystal displays , 1998 .

[13]  A. Zhao,et al.  Theoretical proof of the material independent PML absorbers used for arbitrary anisotropic media , 1998 .

[14]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[15]  Antti V. Räisänen,et al.  Material independent PML absorbers for arbitrary anisotropic dielectric media , 1997 .