3 J pulsed Fe:ZnS laser tunable from 3.44 to 4.19 μm

We report the laser properties of Fe:ZnS in the temperature range from 85 to 186 K. Under pumping by a pulsed free-running 2.94 μm Er:YAG laser, a maximum output energy of 3.25 J at 85 K was produced with 27% optical-to-optical efficiency. The output wavelength was observed to tune with temperatures from 3.60 μm at 85 K to 3.78 μm at 186 K. As the temperature was increased, the absorbed energy slope efficiency decreased from 42.4% at 85 K down to 2.5% at 183 K. With a CaF2 prism, the Fe:ZnS laser could be tuned from 3.44 to 4.19 μm at 85 K.

[1]  Vladimir V. Fedorov,et al.  Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals , 2012 .

[2]  Irina T. Sorokina,et al.  Cr2+-doped II–VI materials for lasers and nonlinear optics , 2004 .

[3]  E. Sorokin,et al.  Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe laser , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[4]  I. I. Zasavitskii,et al.  Active-region designs in quantum cascade lasers , 2012 .

[5]  V. A. Akimov,et al.  Laser spectroscopy: Intracavity laser spectroscopy by using a Fe2+:ZnSe laser , 2007 .

[6]  Evgeni Sorokin,et al.  Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers , 2010 .

[7]  V. A. Akimov,et al.  Intracavity laser spectroscopy using a Cr2+ : ZnSe laser , 2004 .

[8]  Edward D. Palik,et al.  Zinc Sulfide (ZnS) , 1997 .

[9]  Ralph H. Page,et al.  Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media , 1996 .

[10]  V. A. Akimov,et al.  Intracavity laser spectroscopy with a semiconductor disk laser-pumped cw laser , 2013 .

[11]  V. A. Akimov,et al.  LASERS AND AMPLIFIERS: Efficient lasing in a Fe2+:ZnSe crystal at room temperature , 2006 .

[12]  Mikhail P. Frolov,et al.  Laser parameters of a Fe: ZnSe crystal in the 85-255-K temperature range , 2005 .

[13]  V. A. Akimov,et al.  LASER SPECTROSCOPY: Spectral dynamics of intracavity absorption in a pulsed Cr2+:ZnSe laser , 2005 .

[14]  Lloyd L. Chase,et al.  LiCaAlF/sub 6/:Cr/sup 3+/: a promising new solid-state laser material , 1988 .

[15]  Vladimir I. Kozlovsky,et al.  Study of a 2-J pulsed Fe:ZnSe 4-μm laser , 2013 .

[16]  Ralph H. Page,et al.  Cr/sup 2+/-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers , 1997 .

[17]  Tunable two-mode Cr 2+ : ZnSe laser with a frequency-noise spectral density of 0.03 Hz Hz -1/2 , 2012 .

[18]  G. A. Slack,et al.  Infrared Luminescence of Fe 2+ in ZnS , 1967 .

[19]  V. A. Akimov,et al.  Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers , 2006 .

[20]  V. A. Akimov,et al.  Pulsed broadly tunable room-temperature Cr2+:CdS laser , 2009 .

[21]  Lloyd L. Chase,et al.  LiCaAlF6:Cr3+: A promising new solid-state laser material , 2002 .

[22]  Mikhail P. Frolov,et al.  Observation of saturated dispersion resonances of methane in a two-mode Cr2+ : ZnSe/CH4 laser , 2012 .

[23]  Jonathan W. Evans,et al.  840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm. , 2012, Optics letters.

[24]  Umit Demirbas,et al.  Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm. , 2006, Optics letters.

[25]  V. A. Akimov,et al.  Room‐temperature tunable mid‐infrared lasers on transition‐metal doped II–VI compound crystals grown from vapor phase , 2010 .

[26]  V. A. Akimov,et al.  Efficient pulsed Cr2+ : CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm , 2008 .

[28]  Mikhail P. Frolov,et al.  A continuous-wave Fe{sup 2+}:ZnSe laser , 2008 .

[29]  V. Kozlovsky,et al.  Laser radiation tunable within the range of 4.35–5.45 μm in a ZnTe crystal doped with Fe2+ ions , 2011 .

[30]  A. I. Landman,et al.  Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49 — 4.65 μm , 2011 .

[31]  V. A. Akimov,et al.  3.77-5.05-μm tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures , 2006, IEEE Journal of Quantum Electronics.

[32]  E. Sorokin Ultrabroadband Solid-State Lasers in Trace Gas Sensing , 2008 .

[33]  L. Podlowski,et al.  Nonradiative transition rates of Fe2+ in III–V and II–VI semiconductors , 1994 .