Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates.

We demonstrate the possibility in quantifying the Raman intensities for both specimen and substrate layers in a common stacked experimental configuration and, consequently, propose a general and rapid thickness identification technique for atomic-scale layers on dielectric substrates. Unprecedentedly wide-range Raman data for atomically flat MoS(2) flakes are collected to compare with theoretical models. We reveal that all intensity features can be accurately captured when including optical interference effect. Surprisingly, we find that even freely suspended chalcogenide few-layer flakes have a stronger Raman response than that from the bulk phase. Importantly, despite the oscillating intensity of specimen spectrum versus thickness, the substrate weighted spectral intensity becomes monotonic. Combined with its sensitivity to specimen thickness, we suggest this quantity can be used to rapidly determine the accurate thickness for atomic layers.

[1]  D. Late,et al.  Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO2/Si Substrates , 2012 .

[2]  Jagjit Nanda,et al.  Atomically localized plasmon enhancement in monolayer graphene. , 2012, Nature nanotechnology.

[3]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[4]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[5]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[6]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[7]  A. Neto,et al.  New directions in science and technology: two-dimensional crystals , 2011 .

[8]  Jing Guo,et al.  Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors , 2011, IEEE Transactions on Electron Devices.

[9]  Jun Zhang,et al.  Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. , 2011, Nano letters.

[10]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[11]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[12]  Julio Gómez-Herrero,et al.  2D materials: to graphene and beyond. , 2011, Nanoscale.

[13]  H. Hiura,et al.  Enhanced logic performance with semiconducting bilayer graphene channels. , 2010, ACS nano.

[14]  E. Pop,et al.  Reliably counting atomic planes of few-layer graphene (n > 4). , 2010, ACS nano.

[15]  Andreas Kornowski,et al.  Ultrathin PbS Sheets by Two-Dimensional Oriented Attachment , 2010, Science.

[16]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[17]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[18]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[19]  G. Rubio‐Bollinger,et al.  Optical identification of atomically thin dichalcogenide crystals , 2010, 1003.2602.

[20]  Xiangshan Chen,et al.  Crossover of the three-dimensional topological insulator Bi 2 Se 3 to the two-dimensional limit , 2009, 0911.3706.

[21]  B. Park,et al.  Interference effect on Raman spectrum of graphene on SiO 2 / Si , 2009, 0908.4322.

[22]  F. Meier,et al.  A tunable topological insulator in the spin helical Dirac transport regime , 2009, Nature.

[23]  T. Heinz,et al.  Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. , 2009, Nano letters.

[24]  Yihong Wu,et al.  Interference enhancement of Raman signal of graphene , 2008, 0801.4595.

[25]  K. Hwang,et al.  Thickness of graphene and single-wall carbon nanotubes , 2006 .

[26]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[27]  Conal E. Murray,et al.  High‐Mobility Ultrathin Semiconducting Films Prepared by Spin Coating. , 2004 .

[28]  A. Afzali,et al.  High-mobility ultrathin semiconducting films prepared by spin coating , 2004, Nature.

[29]  G. Frey,et al.  Raman and resonance Raman investigation of MoS 2 nanoparticles , 1999 .

[30]  D. Frank,et al.  Generalized scale length for two-dimensional effects in MOSFETs , 1998, IEEE Electron Device Letters.

[31]  Kate Helwig,et al.  Interference effects in surface enhanced Raman scattering by thin adsorbed layers , 1990 .

[32]  J. Ager,et al.  Raman intensities and interference effects for thin films adsorbed on metals , 1990 .

[33]  D. Dilella,et al.  Enhanced Raman spectroscopy of CO adsorbed on vapor‐deposited silver , 1980 .

[34]  H. Hughes,et al.  Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2 , 1979 .

[35]  W. Y. Liang,et al.  Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2 , 1976 .

[36]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[37]  Sadao Adachi,et al.  a-Silicon (a-Si) , 1999 .

[38]  H. R. Philipp,et al.  Silicon Dioxide (SiO2) (Glass) , 1997 .

[39]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[40]  Robert Nemanich,et al.  Interference-enhanced raman scattering of very thin titanium and titanium oxide films , 1980 .