A Framework for Analyzing Spectrum Characteristics in Large Spatio-temporal Scales

Understanding spectrum characteristics with little prior knowledge requires fine-grained spectrum data in the frequency, spatial, and temporal domains; gathering such a diverse set of measurements results in a large data volume. Analysis of the resulting dataset poses unique challenges; methods in the status quo are tailored for specific spectrum-related applications (apps), and are ill equipped to process data of this magnitude. In this paper, we design BigSpec, a general-purpose framework that allows for fast processing of apps. The key idea is to reduce computation costs by performing computation extensively on compressed data that preserves signal features. Adhering to this guideline, we build solutions for three apps, i.e., energy detection, spatio-temporal spectrum estimation, and anomaly detection. These apps were chosen to highlight BigSpec's efficiency, scalability, and extensibility. To evaluate BigSpec's performance, we collect more than 1 terabyte of spectrum data spanning a year, across 300MHz-4GHz, covering 400 km2. Compared with baselines and prior works, we achieve 17× run time efficiency, sublinear rather than linear run time scalability, and extend the definition of anomaly to different domains (frequency & spatio-temporal). We also obtain high-level insights from the data to provide valuable advice on future spectrum measurement and data analysis.

[1]  Mansi S. Subhedar,et al.  SPECTRUM SENSING TECHNIQUES IN COGNITIVE RADIO NETWORKS : A SURVEY , 2011 .

[2]  Tanim M. Taher,et al.  Long-term spectral occupancy findings in Chicago , 2011, 2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN).

[3]  Mingyan Liu,et al.  Mining Spectrum Usage Data: A Large-Scale Spectrum Measurement Study , 2009, IEEE Transactions on Mobile Computing.

[4]  Dirk Grunwald,et al.  Practical radio environment mapping with geostatistics , 2012, 2012 IEEE International Symposium on Dynamic Spectrum Access Networks.

[5]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[6]  Xianfu Chen,et al.  Measurements and analysis of spectrum occupancy in the 2.3–2.4 GHz band in Finland and Chicago , 2014, 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM).

[7]  Y. B. Wah,et al.  Power comparisons of Shapiro-Wilk , Kolmogorov-Smirnov , Lilliefors and Anderson-Darling tests , 2011 .

[8]  Sofie Pollin,et al.  Electrosense: Open and Big Spectrum Data , 2017, IEEE Communications Magazine.

[9]  Sachin Katti,et al.  DOF: a local wireless information plane , 2011, SIGCOMM.

[10]  Mariya Zheleva,et al.  AirVIEW: Unsupervised transmitter detection for next generation spectrum sensing , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[11]  Tan Zhang,et al.  A Wireless Spectrum Analyzer in Your Pocket , 2015, HotMobile.

[12]  Tan Zhang,et al.  A vehicle-based measurement framework for enhancing whitespace spectrum databases , 2014, MobiCom.

[13]  Khaled A. Harras,et al.  Local and Low-Cost White Space Detection , 2017, 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).

[14]  Ben Y. Zhao,et al.  Empirical Validation of Commodity Spectrum Monitoring , 2016, SenSys.

[15]  Christopher M. Bishop,et al.  Current address: Microsoft Research, , 2022 .

[16]  Zhu Han,et al.  Sampling spectrum occupancy data over random fields: A matrix completion approach , 2012, 2012 IEEE International Conference on Communications (ICC).

[17]  David Day,et al.  Solving Complex-Valued Linear Systems via Equivalent Real Formulations , 2001, SIAM J. Sci. Comput..

[18]  Sneha Kumar Kasera,et al.  Simultaneous Power-Based Localization of Transmitters for Crowdsourced Spectrum Monitoring , 2017, MobiCom.

[19]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[20]  Vincent Lenders,et al.  A software-defined sensor architecture for large-scale wideband spectrum monitoring , 2015, IPSN.

[21]  Sumit Roy,et al.  Revisiting TV coverage estimation with measurement-based statistical interpolation , 2015, 2015 7th International Conference on Communication Systems and Networks (COMSNETS).

[22]  Mariya Zheleva,et al.  AirPress: High-accuracy spectrum summarization using compressed scans , 2018, 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN).

[23]  Aaron Schulman,et al.  SweepSense: Sensing 5 GHz in 5 Milliseconds with Low-cost Radios , 2019, NSDI.

[24]  Hairong Kuang,et al.  The Hadoop Distributed File System , 2010, 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST).

[25]  Majid Khabbazian,et al.  Malicious User Detection in a Cognitive Radio Cooperative Sensing System , 2010, IEEE Transactions on Wireless Communications.

[26]  Petar M. Djuric,et al.  Spectrum Patrolling with Crowdsourced Spectrum Sensors , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.

[27]  Kang G. Shin,et al.  Secure cooperative spectrum sensing and access against intelligent malicious behaviors , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[28]  Ranveer Chandra,et al.  Enabling a Nationwide Radio Frequency Inventory Using the Spectrum Observatory , 2018, IEEE Transactions on Mobile Computing.

[29]  Suman Banerjee,et al.  Airshark: detecting non-WiFi RF devices using commodity WiFi hardware , 2011, IMC '11.

[30]  Paramvir Bahl,et al.  Beyond Sensing: Multi-GHz Realtime Spectrum Analytics , 2015, NSDI.

[31]  Paramvir Bahl,et al.  SenseLess: A database-driven white spaces network , 2011, 2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN).

[32]  Larry J. Greenstein,et al.  ALDO: An Anomaly Detection Framework for Dynamic Spectrum Access Networks , 2009, IEEE INFOCOM 2009.

[33]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[34]  Lei Yang,et al.  Supporting Demanding Wireless Applications with Frequency-agile Radios , 2010, NSDI.

[35]  Sofie Pollin,et al.  SAIFE: Unsupervised Wireless Spectrum Anomaly Detection with Interpretable Features , 2018, 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN).

[36]  Zheng-Yi Chai,et al.  Recommendation System Based on Singular Value Decomposition and Multi-Objective Immune Optimization , 2019, IEEE Access.

[37]  Fang Liu,et al.  Insider Attacker Detection in Wireless Sensor Networks , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[38]  Ben Y. Zhao,et al.  Towards commoditized real-time spectrum monitoring , 2014, HotWireless@MobiCom.

[39]  Andreas Achtzehn,et al.  Improving accuracy for TVWS geolocation databases: Results from measurement-driven estimation approaches , 2014, 2014 IEEE International Symposium on Dynamic Spectrum Access Networks (DYSPAN).

[40]  Injong Rhee,et al.  QuickSense: Fast and energy-efficient channel sensing for dynamic spectrum access networks , 2013, 2013 Proceedings IEEE INFOCOM.

[41]  Omid Salehi-Abari,et al.  GHz-wide sensing and decoding using the sparse Fourier transform , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[42]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[43]  Ayon Chakraborty,et al.  Designing a Cloud-Based Infrastructure for Spectrum Sensing: A Case Study for Indoor Spaces , 2016, 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS).

[44]  Carl A. Gunter,et al.  Secure Collaborative Sensing for Crowd Sourcing Spectrum Data in White Space Networks , 2010, 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum (DySPAN).

[45]  Ranveer Chandra,et al.  SNOW: Sensor Network over White Spaces , 2016, SenSys.

[46]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[47]  Aakanksha Chowdhery,et al.  TxMiner: Identifying transmitters in real-world spectrum measurements , 2015, 2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN).

[48]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender System - A Case Study , 2000 .

[49]  Chunming Qiao,et al.  Crowdsourcing Access Network Spectrum Allocation Using Smartphones , 2014, HotNets.

[50]  Eric Eide,et al.  Introducing CloudLab: Scientific Infrastructure for Advancing Cloud Architectures and Applications , 2014, login Usenix Mag..

[51]  Bo Chen,et al.  FastProbe: Malicious user detection in Cognitive Radio Networks through active transmissions , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[52]  Kang G. Shin,et al.  In-band spectrum sensing in cognitive radio networks: energy detection or feature detection? , 2008, MobiCom '08.