A mechanically adaptive hydrogel with a reconfigurable network consisting entirely of inorganic nanosheets and water

[1]  Liangbing Hu,et al.  A Dynamic Gel with Reversible and Tunable Topological Networks and Performances , 2020 .

[2]  T. Aida,et al.  Internal structure and mechanical property of an anisotropic hydrogel with electrostatic repulsion between nanosheets , 2019, Polymer.

[3]  P. Levkin,et al.  Design and Applications of Photoresponsive Hydrogels , 2019, Advanced materials.

[4]  Marek Grzelczak,et al.  Stimuli-responsive self-assembly of nanoparticles. , 2019, Chemical Society reviews.

[5]  Alan E. Rowan,et al.  Cytoskeletal stiffening in synthetic hydrogels , 2019, Nature Communications.

[6]  E. Kumacheva,et al.  Design and applications of man-made biomimetic fibrillar hydrogels , 2019, Nature Reviews Materials.

[7]  I. Voets,et al.  Mimicking Active Biopolymer Networks with a Synthetic Hydrogel , 2019, Journal of the American Chemical Society.

[8]  T. Aida,et al.  An Anisotropic Hydrogel Actuator Enabling Earthworm-Like Directed Peristaltic Crawling. , 2018, Angewandte Chemie.

[9]  T. Aida,et al.  Extra-Large Mechanical Anisotropy of a Hydrogel with Maximized Electrostatic Repulsion between Cofacially Aligned 2D Electrolytes. , 2018, Angewandte Chemie.

[10]  Adam P. Willard,et al.  Photoswitching topology in polymer networks with metal–organic cages as crosslinks , 2018, Nature.

[11]  Takuzo Aida,et al.  Synthesis of Anisotropic Hydrogels and Their Applications. , 2018, Angewandte Chemie.

[12]  T. Fukushima,et al.  Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. , 2018, Nature chemistry.

[13]  C. Weder,et al.  Bioinspired Polymer Systems with Stimuli-Responsive Mechanical Properties. , 2017, Chemical reviews.

[14]  S. Rowan,et al.  Biomimetic Reversible Heat-Stiffening Polymer Nanocomposites , 2017, ACS central science.

[15]  Ali Khademhosseini,et al.  Advances in engineering hydrogels , 2017, Science.

[16]  Huanan Wang,et al.  Highly Elastic and Self‐Healing Composite Colloidal Gels , 2017, Advanced materials.

[17]  Mark W. Tibbitt,et al.  Scalable manufacturing of biomimetic moldable hydrogels for industrial applications , 2016, Proceedings of the National Academy of Sciences.

[18]  Takuzo Aida,et al.  Photonic water dynamically responsive to external stimuli , 2016, Nature Communications.

[19]  S. Jana,et al.  CdSe Nanoplatelets: Living Polymers. , 2016, Angewandte Chemie.

[20]  N. Hüsing,et al.  Sol-gel synthesis of monolithic materials with hierarchical porosity. , 2016, Chemical Society reviews.

[21]  Akira Harada,et al.  Fast response dry-type artificial molecular muscles with [c2]daisy chains. , 2016, Nature chemistry.

[22]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[23]  B. Sumerlin,et al.  New directions in thermoresponsive polymers. , 2013, Chemical Society reviews.

[24]  H. Lekkerkerker,et al.  Liquid crystal phase transitions in suspensions of mineral colloids: new life from old roots , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Eduardo Mendes,et al.  Responsive biomimetic networks from polyisocyanopeptide hydrogels , 2013, Nature.

[26]  André R Studart,et al.  Towards High‐Performance Bioinspired Composites , 2012, Advanced materials.

[27]  N. Itoh,et al.  Fabrication of boehmite and Al2O3 nonwovens from boehmite nanofibres and their potential as the sorbent , 2012 .

[28]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[29]  A. Petukhov,et al.  Structure of the repulsive gel/glass in suspensions of charged colloidal platelets , 2008 .

[30]  Samuel I Stupp,et al.  Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. , 2008, Chemical reviews.

[31]  D. Tyler,et al.  Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis , 2008, Science.

[32]  H. Cummins Liquid, glass, gel: The phases of colloidal Laponite , 2007 .

[33]  M. Grunze,et al.  Temperature dependence of the short-range repulsion between hydrated phospholipid membranes: A computer simulation study , 2007, Biointerphases.

[34]  B. Korgel,et al.  Columnar self-assembly of colloidal nanodisks. , 2006, Nano letters.

[35]  P. Levitz,et al.  Liquid–crystalline aqueous clay suspensions , 2006, Proceedings of the National Academy of Sciences.

[36]  Tatsuo Motokawa,et al.  Dynamic Mechanical Properties of Body-Wall Dermis in Various Mechanical States and Their Implications for the Behavior of Sea Cucumbers , 2003, The Biological Bulletin.

[37]  T. Uruga,et al.  Small‐angle X‐ray scattering station at the SPring‐8 RIKEN beamline , 2000 .

[38]  Mamoru Watanabe,et al.  Macromolecule-like Aspects for a Colloidal Suspension of an Exfoliated Titanate. Pairwise Association of Nanosheets and Dynamic Reassembling Process Initiated from It , 1996 .

[39]  Trotter,et al.  Morphology and biomechanics of the microfibrillar network of sea cucumber dermis , 1996, The Journal of experimental biology.

[40]  P. Fischer,et al.  Bioinspired microrobots , 2018, Nature Reviews Materials.

[41]  Xue Li,et al.  Stimuli-responsive polymers and their applications , 2017 .

[42]  Robert Langer,et al.  Supramolecular biomaterials. , 2016, Nature materials.

[43]  Stuart J. Rowan,et al.  Biomimetic mechanically adaptive nanocomposites , 2010 .

[44]  R. Sheldon Living Polymers , 1969, Nature.