MoSDeF Cassandra: A complete Python interface for the Cassandra Monte Carlo software

We introduce a new Python interface for the Cassandra Monte Carlo software, molecular simulation design framework (MoSDeF) Cassandra. MoSDeF Cassandra provides a simplified user interface, offers broader interoperability with other molecular simulation codes, enables the construction of programmatic and reproducible molecular simulation workflows, and builds the infrastructure necessary for high‐throughput Monte Carlo studies. Many of the capabilities of MoSDeF Cassandra are enabled via tight integration with MoSDeF. We discuss the motivation and design of MoSDeF Cassandra and proceed to demonstrate both simple use‐cases and more complex workflows, including adsorption in porous media and a combined molecular dynamics – Monte Carlo workflow for computing lateral diffusivity in graphene slit pores. The examples presented herein demonstrate how even relatively complex simulation workflows can be reduced to, at most, a few files of Python code that can be version‐controlled and shared with other researchers. We believe this paradigm will enable more rapid research advances and represents the future of molecular simulations.

[1]  Peter T. Cummings,et al.  Supercapacitor Capacitance Exhibits Oscillatory Behavior as a Function of Nanopore Size , 2011 .

[2]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[3]  Sharon C. Glotzer,et al.  signac - A Simple Data Management Framework , 2016, ArXiv.

[4]  High-Throughput Molecular Dynamics Simulations and Validation of Thermophysical Properties of Polymers for Various Applications , 2020, ACS Applied Polymer Materials.

[5]  Michael R Shirts,et al.  Testing for physical validity in molecular simulations , 2018, PloS one.

[6]  M. G. Martin MCCCS Towhee: a tool for Monte Carlo molecular simulation , 2013 .

[7]  Andrew S. Paluch,et al.  Cassandra: An open source Monte Carlo package for molecular simulation , 2017, J. Comput. Chem..

[8]  R. Snurr,et al.  RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials , 2016 .

[9]  S. Barri,et al.  Structure of Theta-1, the first unidimensional medium-pore high-silica zeolite , 1984, Nature.

[10]  C. Brooks Computer simulation of liquids , 1989 .

[11]  Alexis T. Bell,et al.  Prediction of low occupancy sorption of alkanes in silicalite , 1990 .

[12]  Peter T. Cummings,et al.  MoSDeF, a Python Framework Enabling Large-Scale Computational Screening of Soft Matter: Application to Chemistry-Property Relationships in Lubricating Monolayer Films. , 2020, Journal of chemical theory and computation.

[13]  Xiao Wang,et al.  Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. , 2017, Journal of chemical theory and computation.

[14]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[15]  D. Chandler Metastability and no criticality , 2016, Nature.

[16]  Michael W. Schmidt,et al.  Recent developments in the general atomic and molecular electronic structure system. , 2020, The Journal of chemical physics.

[17]  Peter T. Cummings,et al.  Formalizing atom-typing and the dissemination of force fields with foyer , 2018, Computational Materials Science.

[18]  Ross C. Walker,et al.  An overview of the Amber biomolecular simulation package , 2013 .

[19]  C. Dienemann,et al.  Transcription initiation complex structures elucidate DNA opening , 2016, Nature.

[20]  Wei Chen,et al.  FireWorks: a dynamic workflow system designed for high‐throughput applications , 2015, Concurr. Comput. Pract. Exp..

[21]  David L. Mobley,et al.  Best Practices for Foundations in Molecular Simulations [Article v1.0]. , 2019, Living journal of computational molecular science.

[22]  Frank Neese,et al.  Software update: the ORCA program system, version 4.0 , 2018 .

[23]  Sebastiaan P. Huber,et al.  Workflows in AiiDA: Engineering a high-throughput, event-based engine for robust and modular computational workflows , 2020, ArXiv.

[24]  P. Bai,et al.  TraPPE-zeo: Transferable potentials for phase equilibria force field for all-silica zeolites , 2013 .

[25]  David T. Limmer,et al.  The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II. , 2013, The Journal of chemical physics.

[26]  E. Maginn,et al.  Use of a New Size-Weighted Combining Rule to Predict Adsorption in Siliceous Zeolites , 2020 .

[27]  Thomas J Lane,et al.  MDTraj: a modern, open library for the analysis of molecular dynamics trajectories , 2014, bioRxiv.

[28]  P. Debenedetti,et al.  Palmer et al. reply , 2016, Nature.

[29]  Peter T. Cummings,et al.  Open-source molecular modeling software in chemical engineering , 2019, Current Opinion in Chemical Engineering.

[30]  Roberto Car,et al.  Comment on "The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water" [I and II: J. Chem. Phys. 135, 134503 (2011); J. Chem. Phys. 138, 214504 (2013)]. , 2018, The Journal of chemical physics.

[31]  Alexander G. Demidov,et al.  Update 0.2 to "pysimm: A python package for simulation of molecular systems" , 2018, SoftwareX.

[32]  Hans Hasse,et al.  Round Robin Study: Molecular Simulation of Thermodynamic Properties from Models with Internal Degrees of Freedom. , 2017, Journal of chemical theory and computation.

[33]  Yang Liu,et al.  Liquid-liquid transition in ST2 water. , 2012, The Journal of chemical physics.

[34]  Mikko Karttunen,et al.  The good, the bad and the user in soft matter simulations. , 2016, Biochimica et biophysica acta.

[35]  Vijay S. Pande,et al.  OpenMM 7: Rapid development of high performance algorithms for molecular dynamics , 2016, bioRxiv.

[36]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[37]  Peter T. Cummings,et al.  Towards molecular simulations that are transparent, reproducible, usable by others, and extensible (TRUE) , 2020, Molecular physics.

[38]  Hans Hasse,et al.  ms2: A molecular simulation tool for thermodynamic properties, release 3.0 , 2017, Comput. Phys. Commun..

[39]  Peter T. Cummings,et al.  Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential , 2016 .

[40]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[41]  P. Kent,et al.  Computational Insights into Materials and Interfaces for Capacitive Energy Storage , 2017, Advanced science.

[42]  J. R. Elliott,et al.  Best Practices for Computing Transport Properties 1. Self-Diffusivity and Viscosity from Equilibrium Molecular Dynamics [Article v1.0] , 2019, Living Journal of Computational Molecular Science.

[43]  Michael E. Fortunato,et al.  pysimm: A python package for simulation of molecular systems , 2017, SoftwareX.

[44]  Loren Schwiebert,et al.  GOMC: GPU Optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids , 2019, SoftwareX.

[45]  Chem. , 2020, Catalysis from A to Z.

[46]  Peter T Cummings,et al.  Scalable Screening of Soft Matter: A Case Study of Mixtures of Ionic Liquids and Organic Solvents. , 2019, The journal of physical chemistry. B.

[47]  Randall Q. Snurr,et al.  Object-oriented Programming Paradigms for Molecular Modeling , 2003 .