Heavy metal tolerance in marine strains of Yarrowia lipolytica

[1]  A. Inozemtsev,et al.  Investigation of the effect of biologically active threo-Ds-isocitric acid on oxidative stress in Paramecium caudatum , 2018, Preparative biochemistry & biotechnology.

[2]  S. Kamzolova,et al.  Metabolic peculiarities of the citric acid overproduction from glucose in yeasts Yarrowia lipolytica. , 2017, Bioresource technology.

[3]  A. Rehman,et al.  Heavy Metals Induced Oxidative Stress in Multi-Metal Tolerant Yeast, Candida sp. PS33 and its Capability to Uptake Heavy Metals from Wastewater , 2017 .

[4]  N. Das,et al.  Application of Biofilms on Remediation of Pollutants - An Overview , 2017 .

[5]  L. Ruberto,et al.  Phenol degradation and heavy metal tolerance of Antarctic yeasts , 2017, Extremophiles.

[6]  S. Zinjarde,et al.  Yarrowia lipolytica and pollutants: Interactions and applications. , 2014, Biotechnology advances.

[7]  Edda Klipp,et al.  Impact of Acute Metal Stress in Saccharomyces cerevisiae , 2014, PloS one.

[8]  N. Das,et al.  Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: batch and column studies , 2014, Journal of Environmental Health Science and Engineering.

[9]  C. Raghukumar,et al.  Heavy metal tolerance in the psychrotolerant Cryptococcus sp. isolated from deep‐sea sediments of the Central Indian Basin , 2013, Yeast.

[10]  S. Zinjarde,et al.  Bioleaching of Fly Ash by the Tropical Marine Yeast, Yarrowia lipolytica NCIM 3589 , 2012, Applied Biochemistry and Biotechnology.

[11]  R. Meena,et al.  Differentially expressed genes under simulated deep-sea conditions in the psychrotolerant yeast Cryptococcus sp. NIOCC#PY13 , 2012, Extremophiles.

[12]  S. Zinjarde,et al.  Removal of Ni (II) ions from aqueous solutions by biosorption onto two strains of Yarrowia lipolytica. , 2012, Journal of environmental management.

[13]  Marina Lotti,et al.  Laboratory evolution of copper tolerant yeast strains , 2012, Microbial Cell Factories.

[14]  S. Zinjarde,et al.  Growth of a tropical marine yeast Yarrowia lipolytica NCIM 3589 on bromoalkanes: relevance of cell size and cell surface properties , 2011, Yeast.

[15]  S. Zinjarde,et al.  Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. , 2009, Journal of hazardous materials.

[16]  S. Zinjarde,et al.  Environmental and industrial applications of Yarrowia lipolytica , 2009, Applied Microbiology and Biotechnology.

[17]  S. Zinjarde,et al.  Disruption of fungal and bacterial biofilms by lauroyl glucose , 2008, Letters in applied microbiology.

[18]  Hongli Yuan,et al.  Responses of Rhodotorula sp. Y11 to cadmium , 2008, BioMetals.

[19]  A. Hartwig,et al.  Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms , 2008, Archives of Toxicology.

[20]  F. Abe,et al.  Global Screening of Genes Essential for Growth in High-Pressure and Cold Environments: Searching for Basic Adaptive Strategies Using a Yeast Deletion Library , 2008, Genetics.

[21]  Hiroyasu Ito,et al.  Characteristics of copper tolerance in Yarrowia lipolytica , 2007, BioMetals.

[22]  R. Martinuzzi,et al.  Metal Ions May Suppress or Enhance Cellular Differentiation in Candida albicans and Candida tropicalis Biofilms , 2007, Applied and Environmental Microbiology.

[23]  A. Pasternakiewicz The growth of Saccharomyces cerevisiae yeast in cadmium enriched media , 2006 .

[24]  Rajbir Singh,et al.  Biofilms: implications in bioremediation. , 2006, Trends in microbiology.

[25]  H. Kang,et al.  Accumulation of cadmium ions in the methylotrophic yeast Hansenula polymorpha , 2006, Biometals.

[26]  H. Ceri,et al.  Metal resistance in Candida biofilms. , 2006, FEMS microbiology ecology.

[27]  M. Cronin,et al.  Metals, toxicity and oxidative stress. , 2005, Current medicinal chemistry.

[28]  J. Lopez-Ribot,et al.  Candida Biofilms: an Update , 2005, Eukaryotic Cell.

[29]  N. Russo,et al.  Interaction of cysteine with Cu2+ and group IIb (Zn2+, Cd2+, Hg2+) metal cations: a theoretical study. , 2005, Journal of mass spectrometry : JMS.

[30]  R. Amils,et al.  Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. , 2004, Canadian journal of microbiology.

[31]  B. Zhivotovsky,et al.  The transcriptosomal response of human A549 lung cells to a hydrogen peroxide-generating system: relationship to DNA damage, cell cycle arrest, and caspase activation. , 2004, Free radical biology & medicine.

[32]  P. Raspor,et al.  Uptake of chromium(III) and chromium(VI) compounds in the yeast cell structure , 2004, Biometals.

[33]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[34]  R. Kizek,et al.  Electrochemical study of heavy metals and metallothionein in yeast Yarrowia lipolytica. , 2003, Bioelectrochemistry.

[35]  A. Dominguez,et al.  A Copper-responsive Transcription Factor, CRF1, Mediates Copper and Cadmium Resistance in Yarrowia lipolytica * , 2002, The Journal of Biological Chemistry.

[36]  V. I. Golubev,et al.  Selenium Tolerance of Yeasts , 2002, Microbiology.

[37]  J. Peinado,et al.  Feasibility of copper uptake by the yeast Pichia guilliermondii isolated from sewage sludge. , 2002, Research in microbiology.

[38]  S. Zinjarde,et al.  Hydrocarbon degraders from tropical marine environments. , 2002, Marine pollution bulletin.

[39]  T. Ford Response of marine microbial communities to anthropogenic stress , 2000 .

[40]  A. Shakoori,et al.  Chromium Tolerant Yeast Strains Isolated from Industrial Effluents and Their Possible Use in Environmental Clean-Up , 1999, Bulletin of environmental contamination and toxicology.

[41]  M. Suihko,et al.  Fungi present in some recycled fibre pulps and paperboards , 1999 .

[42]  J. Schroeder,et al.  Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast , 1999, The EMBO journal.

[43]  K. Zierold,et al.  The influence of nickel and cobalt on putative members of the oxygen-sensing pathway of erythropoietin-producing HepG2 cells. , 1998, European journal of biochemistry.

[44]  G. Barth,et al.  Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. , 1997, FEMS microbiology reviews.

[45]  M. Inouhe,et al.  Resistance to cadmium ions and formation of a cadmium-binding complex in various wild-type yeasts. , 1996, Plant & cell physiology.

[46]  D. Thiele,et al.  Expression of a yeast metallothionein gene family is activated by a single metalloregulatory transcription factor , 1992, Molecular and cellular biology.

[47]  H. Clijsters,et al.  Effects of metals on enzyme activity in plants , 1990 .

[48]  L. Mendonça-Hagler,et al.  Yeasts from Marine and Estuarine Waters with Different Levels of Pollution in the State of Rio de Janeiro, Brazil , 1981, Applied and environmental microbiology.

[49]  E. O. Morris,et al.  An Investigation of the Yeast Flora of Marine Fish from Scottish Coastal Waters and a Fishing Ground off Iceland , 1965 .

[50]  H. B. Hamuda,et al.  Functioning of divalent alkaline metal on yeast multiplication in heavy metal contaminated soil , 2012, Tájökológiai Lapok.

[51]  E. Castro,et al.  Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco , 2009 .

[52]  S. Zinjarde,et al.  Biofilm formation by a biotechnologically important tropical marine yeast isolate, Yarrowia lipolytica NCIM 3589. , 2008, Water science and technology : a journal of the International Association on Water Pollution Research.

[53]  M. Islam,et al.  IN VITRO STUDIES ON THE REACTION OF FUNGI Trichoderma TO DIFFERENT HERBICIDES USED IN TEA PLANTATION , 2008 .

[54]  P. Ryszka,et al.  ROLE OF MYCORRHIZAL FUNGI IN PHYTOREMEDIATION AND TOXICITY MONITORING OF HEAVY METAL RICH INDUSTRIAL WASTES IN SOUTHERN POLAND , 2006 .

[55]  P. Kaszycki,et al.  Bioremediation of chromium by the yeast Pichia guilliermondii: toxicity and accumulation of Cr (III) and Cr (VI) and the influence of riboflavin on Cr tolerance. , 2003, Microbiological research.

[56]  H. Brumsack,et al.  Geochemical characteristics of deep-sea sediments from the Arabian Sea: a high-resolution study , 2000 .

[57]  Galen E. Jones,et al.  An ecological survey of open ocean and estuarine microbial populations , 1973 .