A Geometric Characterization of the Persistence of Excitation Condition for the Solutions of Autonomous Systems

The persistence of excitation of signals generated by time-invariant, autonomous, linear, and nonlinear systems is studied using a geometric approach. A rank condition is shown to be equivalent, under certain assumptions, to the persistence of excitation of the solutions of the class of systems considered, both in the discrete-time and in the continuous-time settings. The rank condition is geometric in nature and can be checked a priori, i.e. without knowing explicitly the solutions of the system, for almost periodic systems. The significance of the ideas and tools presented is illustrated by means of simple examples. Applications to model reduction from input–output data and stability analysis of skew-symmetric systems are also discussed.

[1]  Alberto Isidori,et al.  The zero dynamics of a nonlinear system: FrOm The Origin To the latest progresses of a long successful story , 2011, Proceedings of the 30th Chinese Control Conference.

[2]  Alessandro Astolfi,et al.  Characterization of the moments of a linear system driven by explicit signal generators , 2015, 2015 American Control Conference (ACC).

[3]  Xavier Bombois,et al.  Identification and the Information Matrix: How to Get Just Sufficiently Rich? , 2009, IEEE Transactions on Automatic Control.

[4]  Roger W. Brockett,et al.  The early days of geometric nonlinear control , 2014, Autom..

[5]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[6]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[7]  Ying Tan,et al.  Stability and Persistent Excitation in Signal Sets , 2015, IEEE Transactions on Automatic Control.

[8]  Zhong-Ping Jiang,et al.  Uniform Asymptotic Stability of Nonlinear Switched Systems With an Application to Mobile Robots , 2008, IEEE Transactions on Automatic Control.

[9]  Antonio Loría,et al.  Relaxed persistency of excitation for uniform asymptotic stability , 2001, IEEE Trans. Autom. Control..

[10]  Zhong-Ping Jiang,et al.  Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics , 2012, Autom..

[11]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[12]  Eric A Sobie,et al.  An Introduction to Dynamical Systems , 2011, Science Signaling.

[13]  Alexandre S. Bazanella,et al.  Identifiability and excitation of linearly parametrized rational systems , 2016, Autom..

[14]  Zhong-Ping Jiang,et al.  Adaptive dynamic programming and optimal control of nonlinear nonaffine systems , 2014, Autom..

[15]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[16]  Antonio Loría,et al.  A nested Matrosov theorem and persistency of excitation for uniform convergence in stable nonautonomous systems , 2005, IEEE Transactions on Automatic Control.

[17]  Alessandro Astolfi,et al.  Model reduction for linear systems and linear time-delay systems from input/output data , 2015, 2015 European Control Conference (ECC).

[18]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[19]  Karl Johan Åström,et al.  Numerical Identification of Linear Dynamic Systems from Normal Operating Records , 1965 .

[20]  Constantin Corduneanu,et al.  Almost Periodic Oscillations and Waves , 2008 .

[21]  片山 徹 Subspace methods for system identification , 2005 .

[22]  K. Narendra,et al.  Persistent excitation in adaptive systems , 1987 .

[23]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[24]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[25]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[26]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[27]  Miroslav Krstic,et al.  State derivative feedback for adaptive cancellation of unmatched disturbances in unknown strict-feedback LTI systems , 2014, Autom..

[28]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[29]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[30]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[31]  Chih-fen Chang,et al.  Qualitative Theory of Differential Equations , 1992 .

[32]  Alessandro Astolfi,et al.  Model Reduction by Moment Matching for Linear and Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.

[33]  Roger W. Brockett,et al.  Feedback Invariants for Nonlinear Systems , 1978 .

[34]  Alessandro Astolfi,et al.  A geometric characterisation of persistently exciting signals generated by continuous-time autonomous systems , 2016 .

[35]  Anuradha M. Annaswamy,et al.  Robust Adaptive Control , 1984, 1984 American Control Conference.

[36]  Alessandro Astolfi,et al.  Model Reduction of Neutral Linear and Nonlinear Time-Invariant Time-Delay Systems With Discrete and Distributed Delays , 2016, IEEE Transactions on Automatic Control.

[37]  Karl Johan Åström,et al.  Control: A perspective , 2014, Autom..

[38]  Alessandro Astolfi,et al.  Model Reduction by Moment Matching for Linear and Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.

[39]  R. Grimmer,et al.  Asymptotically Almost Periodic Solutions of Differential Equations , 1969 .

[40]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[41]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[42]  L. Ljung,et al.  Adaptive Control Design and Analysis ( , 2014 .

[43]  A. Fink Almost Periodic Differential Equations , 1974 .

[44]  Maria Adler,et al.  Stable Adaptive Systems , 2016 .

[45]  A. Loria,et al.  /spl delta/-persistency of excitation: a necessary and sufficient condition for uniform attractivity , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[46]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[47]  K. Lynch Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[48]  A. N. Sharkovskiĭ,et al.  Difference Equations and Their Applications , 1993 .

[49]  John B. Moore,et al.  Persistence of Excitation in Linear Systems , 1985, 1985 American Control Conference.

[50]  K. Narendra,et al.  On the Stability of Nonautonomous Differential Equations $\dot x = [A + B(t)]x$, with Skew Symmetric Matrix $B(t)$ , 1977 .