On the Importance of Domain Adaptation in Texture Classification

Texture classification algorithms require generalization abilities in order to be reliably used in real world applications. This paper casts this problem in the domain adaptation setting and presents the first study investigating (a) up to which extent this visual recognition problem suffers from this issue, and (b) the effectiveness of existing domain adaptation algorithms in mitigating it. We focus on domain adaptation methods based on shallow classifiers, and test their performance on deep and non deep features. Results obtained on a newly created domain adaptation texture setup show the superiority of deep features compared to other well known approaches, and highlights the importance of factoring in the domain shift when dealing with textures in the wild.

[1]  Paolo Napoletano,et al.  Combining local binary patterns and local color contrast for texture classification under varying illumination. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  Barbara Caputo,et al.  Class-Specific Material Categorisation , 2005, ICCV.

[3]  Iasonas Kokkinos,et al.  Describing Textures in the Wild , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Paolo Napoletano,et al.  Illuminant Invariant Descriptors for Color Texture Classification , 2013, CCIW.

[5]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[7]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[8]  Michael Weinmann,et al.  Material Classification Based on Training Data Synthesized Using a BTF Database , 2014, ECCV.

[9]  Francesco Bianconi,et al.  Evaluation of the effects of Gabor filter parameters on texture classification , 2007, Pattern Recognit..

[10]  Iasonas Kokkinos,et al.  Deep Filter Banks for Texture Recognition, Description, and Segmentation , 2015, International Journal of Computer Vision.

[11]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[12]  M. Pietikäinen,et al.  TEXTURE ANALYSIS WITH LOCAL BINARY PATTERNS , 2004 .

[13]  Barbara Caputo,et al.  Frustratingly Easy NBNN Domain Adaptation , 2013, 2013 IEEE International Conference on Computer Vision.

[14]  Subhransu Maji,et al.  Visualizing and Understanding Deep Texture Representations , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[16]  Gaurav Sharma,et al.  Local Higher-Order Statistics (LHS) for Texture Categorization and Facial Analysis , 2012, ECCV.

[17]  Philip S. Yu,et al.  Transfer Joint Matching for Unsupervised Domain Adaptation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Gertjan J. Burghouts,et al.  Material-specific adaptation of color invariant features , 2009, Pattern Recognit. Lett..

[19]  Mario Fritz,et al.  Recognizing Materials from Virtual Examples , 2012, ECCV.

[20]  Edward H. Adelson,et al.  Recognizing Materials Using Perceptually Inspired Features , 2013, International Journal of Computer Vision.

[21]  Ivor W. Tsang,et al.  Domain Adaptation via Transfer Component Analysis , 2009, IEEE Transactions on Neural Networks.

[22]  Rémi Emonet,et al.  Landmarks-based kernelized subspace alignment for unsupervised domain adaptation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[24]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[25]  Paolo Napoletano,et al.  Evaluating color texture descriptors under large variations of controlled lighting conditions , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  Tinne Tuytelaars,et al.  Unsupervised Visual Domain Adaptation Using Subspace Alignment , 2013, 2013 IEEE International Conference on Computer Vision.

[27]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[28]  Xianghua Xie,et al.  Handbook of Texture Analysis , 2008 .

[29]  Yuan Shi,et al.  Geodesic flow kernel for unsupervised domain adaptation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[31]  Paolo Napoletano,et al.  Intensity and color descriptors for texture classification , 2013, Electronic Imaging.