Virtual histology of the human heart using optical coherence tomography.

Optical coherence tomography (OCT) allows for the visualization of micron-scale structures within nontransparent biological tissues. For the first time, we demonstrate the use of OCT in identifying components of the cardiac conduction system and other structures in the explanted human heart. Reconstructions of cardiac structures up to 2 mm below the tissue surface were achieved and validated with Masson Trichrome histology in atrial, ventricular, sinoatrial nodal, and atrioventricular nodal preparations. The high spatial resolution of OCT provides visualization of cardiac fibers within the myocardium, as well as elements of the cardiac conduction system; however, a limiting factor remains its depth penetration, demonstrated to be approximately 2 mm in cardiac tissues. Despite its currently limited imaging depth, the use of OCT to identify the structural determinants of both normal and abnormal function in the intact human heart is critical in its development as a potential aid to intracardiac arrhythmia diagnosis and therapy.

[1]  Michael W. Jenkins,et al.  Optical Coherence Tomography Imaging of the Purkinje Network , 2005, Journal of cardiovascular electrophysiology.

[2]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[3]  Vadim V Fedorov,et al.  Bimodal biophotonic imaging of the structure-function relationship in cardiac tissue. , 2008, Journal of biomedical optics.

[4]  Siavash Yazdanfar,et al.  Real-time in vivo color Doppler optical coherence tomography. , 2002, Journal of biomedical optics.

[5]  T. L. Pinto,et al.  Clinical applications of optical coherence tomography. , 2006, Journal of interventional cardiology.

[6]  M. V. van Gemert,et al.  Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. , 1997, Optics letters.

[7]  Thilo Gambichler,et al.  Applications of optical coherence tomography in dermatology. , 2005, Journal of dermatological science.

[8]  Mark E Brezinski,et al.  Ultrasound induced improvement in optical coherence tomography (OCT) resolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Wolfgang Drexler,et al.  State-of-the-art retinal optical coherence tomography , 2008, Progress in Retinal and Eye Research.

[10]  B E Bouma,et al.  Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery. , 1996, Circulation.

[11]  J G Fujimoto,et al.  High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al(2)O(3) laser source. , 1995, Optics letters.

[12]  M. Jenkins,et al.  In vivo gated 4D imaging of the embryonic heart using optical coherence tomography. , 2007, Journal of biomedical optics.

[13]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[14]  J. Fujimoto,et al.  In vivo endoscopic optical biopsy with optical coherence tomography. , 1997, Science.

[15]  J. Fujimoto,et al.  Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. , 1996, Circulation.

[16]  Daniel L Marks,et al.  Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system. , 2006, Journal of biomedical optics.

[17]  J. Fujimoto,et al.  Index Matching to Improve Optical Coherence Tomography Imaging Through Blood , 2001, Circulation.

[18]  A. Rollins,et al.  Quasi-telecentric optical design of a microscope-compatible OCT scanner. , 2005, Optics Express.

[19]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[20]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[21]  Bin Liu,et al.  Ultrasound-enhanced optical coherence tomography: improved penetration and resolution. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  B E Bouma,et al.  High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. , 2008, Optics express.

[23]  Mark E Brezinski,et al.  Applications of optical coherence tomography to cardiac and musculoskeletal diseases: bench to bedside? , 2007, Journal of biomedical optics.

[24]  J. Fujimoto,et al.  High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source , 2001 .

[25]  A. Fercher,et al.  Submicrometer axial resolution optical coherence tomography. , 2002, Optics letters.

[26]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[27]  M. Brezinski Optical Coherence Tomography: Principles and Applications , 2006 .

[28]  M. Valderrábano,et al.  Influence of anisotropic conduction properties in the propagation of the cardiac action potential. , 2007, Progress in biophysics and molecular biology.

[29]  S. F. Lin,et al.  Dynamics of intramural and transmural reentry during ventricular fibrillation in isolated swine ventricles. , 2001, Circulation research.

[30]  S. Yun,et al.  High-speed optical frequency-domain imaging. , 2003, Optics express.

[31]  Maciej Wojtkowski,et al.  Retinal assessment using optical coherence tomography , 2006, Progress in Retinal and Eye Research.

[32]  J. Fujimoto Optical coherence tomography for ultrahigh resolution in vivo imaging , 2003, Nature Biotechnology.

[33]  B E Bouma,et al.  Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography. , 1996, Optics letters.

[34]  Xiangqun Xu,et al.  Optical clearing of flowing blood using dextrans with spectral domain optical coherence tomography. , 2008, Journal of biomedical optics.

[35]  Joseph A Izatt,et al.  Imaging of the Atrioventricular Node Using Optical Coherence Tomography , 2002, Journal of cardiovascular electrophysiology.

[36]  H Honjo,et al.  The sinoatrial node, a heterogeneous pacemaker structure. , 2000, Cardiovascular research.

[37]  B. Bouma,et al.  Optical coherence tomography for imaging the vulnerable plaque. , 2006, Journal of biomedical optics.

[38]  W Drexler,et al.  Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography. , 2004, Physics in medicine and biology.

[39]  Andrew M. Rollins,et al.  Quantification of cardiac fiber orientation using optical coherence tomography. , 2008, Journal of biomedical optics.

[40]  R. Chang,et al.  New developments in optical coherence tomography for glaucoma , 2008, Current opinion in ophthalmology.

[41]  Giulio Guagliumi,et al.  Optical coherence tomography: High resolution intravascular imaging to evaluate vascular healing after coronary stenting , 2008, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[42]  Igor R Efimov,et al.  Optical Coherence Tomography as a Tool for Measuring Morphogenetic Deformation of the Looping Heart , 2007, Anatomical record.

[43]  Robert H. Anderson,et al.  Atrial structure and fibres: morphologic bases of atrial conduction. , 2002, Cardiovascular research.

[44]  J. Welzel Optical coherence tomography in dermatology: a review , 2001, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[45]  E. Halpern,et al.  Quantification of Macrophage Content in Atherosclerotic Plaques by Optical Coherence Tomography , 2003, Circulation.

[46]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .