POSITIVE FRAGMENTS OF RELEVANCE LOGIC AND ALGEBRAS OF BINARY RELATIONS

We prove that algebras of binary relations whose similarity type includes intersection, union, and one of the residuals of relation composition form a nonfinitely axiomatizable quasivariety and that the equational theory is not finitely based. We apply this result to the problem of the completeness of the positive fragment of relevance logic with respect to binary relations.

[1]  Dexter Kozen,et al.  On Action Algebras , 1994 .

[2]  Szabolcs Mikulás,et al.  Representable semilattice-ordered monoids , 2007 .

[3]  Robin Hirsch,et al.  Representability is not decidable for finite relation algebras , 1999 .

[4]  Ian M. Hodkinson,et al.  Relation algebras form cylindric algebras, I , 2001, Ann. Pure Appl. Log..

[5]  Ian M. Hodkinson,et al.  Relation Algebras with n-Dimensional Relational Bases , 2000, Ann. Pure Appl. Log..

[6]  Roger D. Maddux,et al.  Relation Algebras , 1997, Relational Methods in Computer Science.

[7]  Roger D. Maddux,et al.  RELEVANCE LOGIC AND THE CALCULUS OF RELATIONS , 2010, The Review of Symbolic Logic.

[8]  Szabolcs Mikulás,et al.  Axiomatizability of positive algebras of binary relations , 2011 .

[9]  Nuel D. Belnap,et al.  Entailment : the logic of relevance and necessity , 1975 .

[10]  Alessandra Palmigiano,et al.  Canonical extensions and relational completeness of some substructural logics* , 2005, Journal of Symbolic Logic.

[11]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[12]  J. Dunn,et al.  The algebra of intensional logics , 2019 .

[13]  Szabolcs Mikulás,et al.  Algebras of Relations and Relevance Logic , 2009, J. Log. Comput..

[14]  Szabolcs Mikulás,et al.  On representable ordered residuated semigroups , 2011, Log. J. IGPL.

[15]  Ian M. Hodkinson,et al.  Relation algebras form cylindric algebras, II , 2001, Ann. Pure Appl. Log..

[16]  Vaughan R. Pratt,et al.  Action Logic and Pure Induction , 1990, JELIA.

[17]  Ian M. Hodkinson,et al.  Strongly representable atom structures of cylindric algebras , 2009, The Journal of Symbolic Logic.

[18]  J. Michael Dunn A relational representation of quasi-Boolean algebras , 1982, Notre Dame J. Formal Log..

[19]  Ian M. Hodkinson,et al.  Atom Structures of Cylindric Algebras and Relation Algebras , 1997, Ann. Pure Appl. Log..

[20]  R. Meyer,et al.  The semantics of entailment — III , 1973 .

[21]  Szabolcs Mikulás,et al.  Lambek Calculus and its relational semantics: Completeness and incompleteness , 1994, J. Log. Lang. Inf..

[22]  D. Monk On representable relation algebras. , 1964 .

[23]  Hajnal Andréka,et al.  Representations of distributive lattice-ordered semigroups with binary relations , 1991 .

[24]  Ian M. Hodkinson,et al.  Complete representations in algebraic logic , 1997, Journal of Symbolic Logic.

[25]  Dexter Kozen A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events , 1994, Inf. Comput..

[26]  Robin Hirsch The Class of Representable Ordered Monoids has a Recursively Enumerable, Universal Axiomatisation but it is Not Finitely Axiomatisable , 2005, Log. J. IGPL.

[27]  R. Meyer,et al.  Algebraic analysis of entailment I , 1972 .

[28]  Szabolcs Mikulás Axiomatizability of algebras of binary relations , 2001, FotFS.

[29]  Tomasz Kowalski Weakly associative relation algebras hold the key to the universe , 2007 .

[30]  B. M. Schein,et al.  Representations of ordered semigroups and lattices by binary relations , 1978 .

[31]  Vito F. Sinisi,et al.  Entailment: The Logic of Relevance and Necessity , 1996 .

[32]  Clye ClY A BRIEF SURVEY OF FRAMES FOR THE LAMBEK CALCULUS , 2006 .

[33]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[34]  Robin Hirsch Completely Representable Relation Algebras , 1995, Log. J. IGPL.

[35]  Johan van Benthem,et al.  Exploring logical dynamics , 1996, Studies in logic, language and information.

[36]  Richard Sylvan,et al.  The semantics of entailment—II , 1972, Journal of Philosophical Logic.

[37]  Katalin Bimbó,et al.  RELEVANCE LOGICS AND RELATION ALGEBRAS , 2009, The Review of Symbolic Logic.

[38]  I. Hodkinson,et al.  Relation Algebras by Games , 2002 .

[39]  A. Tarski Contributions to the theory of models. III , 1954 .

[40]  Szabolcs Mikulás,et al.  Axiomatizability of reducts of algebras of relations , 2000 .