Assessing the accuracy of predicted ocean tide loading displacement values

The accuracy of ocean tide loading (OTL) displacement values has long been assumed to be dominated by errors in the ocean tide models used, with errors due to the convolution scheme used considered very small (2–5%). However, this paper shows that much larger convolution errors can arise at sites within approximately 150 km of the coastline, depending on the method used to refine the discrete regularly spaced grid cells of the ocean tide model to better fit the coastline closest to the site of interest. If the local water mass redistribution approach is implemented, as used in the OLFG/OLMPP software recommended in the IERS 2003 conventions, OTL height displacement errors of up to around 20% can arise, depending on the ocean tide model used. Bilinear interpolation only, as used in the SPOTL and CARGA softwares for example, is shown from extensive global and regional comparisons of OTL displacement values derived from the different methods and softwares to be more appropriate. This is verified using GPS observations. The coastal refinement approach used in the OLFG/OLMPP software was therefore changed in August 2007 to use bilinear interpolation only. It is shown that with this change, OTL displacement values computed using OLFG/OLMPP, SPOTL and CARGA invariably agree to the millimetre level for coastal sites, and better than 0.2 mm for sites more than about 150 km inland.

[1]  Jean-Marie Nicolas,et al.  Ocean tide loading (OTL) displacements from global and local grids: comparisons to GPS estimates over the shelf of Brittany, France , 2008 .

[2]  J. Boy,et al.  A comparison of tidal ocean loading models using superconducting gravimeter data , 2003 .

[3]  C. Provost,et al.  Spectroscopy of the world ocean tides from a finite element hydrodynamic model , 1994 .

[4]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[5]  Gerard Petit,et al.  IERS Conventions (2003) , 2004 .

[6]  H. Plag,et al.  Testing ocean tide models in the Nordic seas with tidal gravity observations , 2002 .

[7]  Peter J. Clarke,et al.  Stability of direct GPS estimates of ocean tide loading , 2004 .

[8]  Peter J. Clarke,et al.  Subdaily signals in GPS observations and their effect at semiannual and annual periods , 2008 .

[9]  M. E. Parke,et al.  Accuracy assessment of recent ocean tide models , 1997 .

[10]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[11]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[12]  Gerd Gendt,et al.  The International GPS Service: Celebrating the 10th anniversary and looking to the next decade , 2005 .

[13]  M. Ooe,et al.  GOTIC2: A Program for Computation of Oceanic Tidal Loading Effect , 2001 .

[14]  T. Baker,et al.  Validating Earth and ocean tide models using tidal gravity measurements , 2003 .

[15]  Peter J. Clarke,et al.  Validation of ocean tide models around Antarctica using onshore GPS and gravity data , 2005 .

[16]  G. Blewitt Self‐consistency in reference frames, geocenter definition, and surface loading of the solid Earth , 2003 .

[17]  E. W. Schwiderski,et al.  On charting global ocean tides , 1980 .

[18]  Matt A. King Kinematic and static GPS techniques for estimating tidal displacements with application to Antarctica , 2006 .

[19]  Olivier Francis,et al.  Global charts of ocean tide loading effects , 1990 .

[20]  Leonid Petrov,et al.  Study of harmonic site position variations determined by very long baseline interferometry , 2003 .

[21]  K. Matsumoto GOTIC2: a Software for Computation of Oceanic Tidal Loading Effect , 2001 .

[22]  H. Johnson,et al.  A comparison of 'traditional' and multimedia information systems development practices , 2003, Inf. Softw. Technol..

[23]  Peter J. Clarke,et al.  A comparison of GPS, VLBI and model estimates of ocean tide loading displacements , 2006 .

[24]  T. Baker,et al.  An estimate of the errors in gravity ocean tide loading computations , 2005 .

[25]  Mike P. Stewart,et al.  GPS height time series: Short‐period origins of spurious long‐period signals , 2007 .

[26]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[27]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[28]  I. M. Longman A Green's function for determining the deformation of the Earth under surface mass loads: 2. Computations and numerical results , 1963 .

[29]  M. Ooe,et al.  Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan , 2000 .

[30]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[31]  Gerhard Beutler,et al.  Validating ocean tide loading models using GPS , 2005 .

[32]  I. M. Longman A Green's function for determining the deformation of the Earth under surface mass loads: 1. Theory , 1962 .

[33]  C. Provost,et al.  FES99: A Global Tide Finite Element Solution Assimilating Tide Gauge and Altimetric Information , 2002 .

[34]  H. Scherneck A parametrized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements , 1991 .

[35]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[36]  Duncan Carr Agnew,et al.  NLOADF: A program for computing ocean‐tide loading , 1997 .