Targeting nuclear RNA for in vivo correction of myotonic dystrophy

[1]  T. Cooper,et al.  RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1 , 2012, Proceedings of the National Academy of Sciences.

[2]  M. Nakamori,et al.  Stabilization of expanded (CTG)•(CAG) repeats by antisense oligonucleotides. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[3]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[4]  Howard Y. Chang,et al.  Long noncoding RNAs and human disease. , 2011, Trends in cell biology.

[5]  M. Manoharan,et al.  Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes , 2011, Nucleic acids research.

[6]  M. Minczuk,et al.  An Upstream Open Reading Frame and the Context of the Two AUG Codons Affect the Abundance of Mitochondrial and Nuclear RNase H1 , 2010, Molecular and Cellular Biology.

[7]  N. Bonini,et al.  Roles of trinucleotide-repeat RNA in neurological disease and degeneration , 2010, Trends in Neurosciences.

[8]  Tyson A. Clark,et al.  Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy , 2010, Nature Structural &Molecular Biology.

[9]  C. Bennett,et al.  RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. , 2010, Annual review of pharmacology and toxicology.

[10]  B. Wieringa,et al.  Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy , 2009, Proceedings of the National Academy of Sciences.

[11]  Krzysztof Sobczak,et al.  Reversal of RNA Dominance by Displacement of Protein Sequestered on Triplet Repeat RNA , 2009, Science.

[12]  M. Swanson,et al.  Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy. , 2009, Human molecular genetics.

[13]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[14]  David L. Spector,et al.  3′ End Processing of a Long Nuclear-Retained Noncoding RNA Yields a tRNA-like Cytoplasmic RNA , 2008, Cell.

[15]  J. Lueck,et al.  Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. , 2007, Journal of Clinical Investigation.

[16]  A. Munnich,et al.  CTG Trinucleotide Repeat “Big Jumps”: Large Expansions, Small Mice , 2007, PLoS genetics.

[17]  M. Swanson,et al.  Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. , 2006, Human molecular genetics.

[18]  A. Rabinowitz,et al.  Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology , 2006, Nature Medicine.

[19]  Michael Q. Zhang,et al.  Regulating Gene Expression through RNA Nuclear Retention , 2005, Cell.

[20]  H. Blum,et al.  Translation of stable hepadnaviral mRNA cleavage fragments induced by the action of phosphorothioate-modified antisense oligodeoxynucleotides , 2005, Nucleic acids research.

[21]  A. Briguet,et al.  Histological parameters for the quantitative assessment of muscular dystrophy in the mdx-mouse , 2004, Neuromuscular Disorders.

[22]  S. Crooke,et al.  Determination of the Role of the Human RNase H1 in the Pharmacology of DNA-like Antisense Drugs* , 2004, Journal of Biological Chemistry.

[23]  W. Hauswirth,et al.  A Muscleblind Knockout Model for Myotonic Dystrophy , 2003, Science.

[24]  G. Hardee,et al.  Pharmacokinetics of a tumor necrosis factor-alpha phosphorothioate 2'-O-(2-methoxyethyl) modified antisense oligonucleotide: comparison across species. , 2003, Drug metabolism and disposition: the biological fate of chemicals.

[25]  D. L. Cole,et al.  Solid Phase Synthesis of Phosphorothioate Oligonucleotides Utilizing Diethyldithiocarbonate Disulfide (DDD) as an Efficient Sulfur Transfer Reagent , 2003, Nucleosides, nucleotides & nucleic acids.

[26]  C. F. Bennett,et al.  Efficient Reduction of Target RNAs by Small Interfering RNA and RNase H-dependent Antisense Agents , 2003, The Journal of Biological Chemistry.

[27]  S. Cannon,et al.  Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. , 2002, Molecular cell.

[28]  A. Delacourte,et al.  Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. , 2001, Human molecular genetics.

[29]  R. J. White,et al.  Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. , 2000, Science.

[30]  B. Byrne,et al.  Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy , 2000, The EMBO journal.

[31]  C. Junien,et al.  Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability. , 2000, Human molecular genetics.

[32]  T. Misteli,et al.  Nucleocytoplasmic shuttling: a novel in vivo property of antisense phosphorothioate oligodeoxynucleotides. , 2000, Nucleic acids research.

[33]  Joshua M. Stuart,et al.  MICROARRAY EXPERIMENTS : APPLICATION TO SPORULATION TIME SERIES , 1999 .

[34]  A. Levin,et al.  A nonradioisotope biomedical assay for intact oligonucleotide and its chain-shortened metabolites used for determination of exposure and elimination half-life of antisense drugs in tissue. , 1999, Analytical biochemistry.

[35]  M. Napierala,et al.  CUG Repeats Present in Myotonin Kinase RNA Form Metastable “Slippery” Hairpins* , 1997, The Journal of Biological Chemistry.

[36]  D. Housman,et al.  Expansion of a CUG trinucleotide repeat in the 3' untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[38]  M. Graham,et al.  Quantitation of phosphorothioate oligonucleotides in human plasma. , 1996, Analytical biochemistry.

[39]  D. Housman,et al.  Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues , 1995, The Journal of cell biology.

[40]  P. Berg,et al.  Rapid assembly and disassembly of complementary DNA strands through an equilibrium intermediate state mediated by A1 hnRNP protein. , 1992, The Journal of biological chemistry.

[41]  David E. Housman,et al.  Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member , 1992, Cell.

[42]  P. Jong,et al.  Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy , 1992, Nature.

[43]  David E. Housman,et al.  Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy , 1992, Nature.