Factors affecting the performance of the Zn-Ce redox flow battery

[1]  D. Hall,et al.  Frontispiece: The Development of Zn–Ce Hybrid Redox Flow Batteries for Energy Storage and Their Continuing Challenges , 2015 .

[2]  D. Hall,et al.  Corrigendum to “An electrochemical study on the positive electrode side of the zinc–cerium hybrid redox flow battery” [115 (2014) 621–629] , 2014 .

[3]  D. Hall,et al.  A study of different carbon composite materials for the negative half-cell reaction of the zinc cerium hybrid redox flow cell , 2013 .

[4]  D. Hall,et al.  Impact of electrolyte composition on the performance of the zinc-cerium redox flow battery system , 2013 .

[5]  C. Low,et al.  Progress in redox flow batteries, remaining challenges and their applications in energy storage , 2012 .

[6]  D. Hall,et al.  Evaluation of carbon composite materials for the negative electrode in the zinc–cerium redox flow cell☆ , 2012 .

[7]  C. Ponce de León,et al.  An undivided zinc–cerium redox flow battery operating at room temperature (295 K) , 2011 .

[8]  Frank C. Walsh,et al.  Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery , 2011 .

[9]  Frank C. Walsh,et al.  Characterization of a zinc–cerium flow battery , 2011 .

[10]  Ke‐long Huang,et al.  Cerium-zinc redox flow battery: Positive half-cell electrolyte studies , 2011 .

[11]  Daniel A. Steingart,et al.  Zinc morphology in zinc-nickel flow assisted batteries and impact on performance , 2011 .

[12]  A. Hubin,et al.  On the modeling of electrochemical systems with simultaneous gas evolution. Case study: The zinc deposition mechanism , 2010 .

[13]  Charles W. Monroe,et al.  Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries , 2009 .

[14]  Gaoping Cao,et al.  Study on a single flow acid Cd–chloranil battery , 2009 .

[15]  Edward P.L. Roberts,et al.  Numerical modelling of a bromide-polysulphide redox flow battery. Part 1: Modelling approach and validation for a pilot scale system , 2009 .

[16]  Yusheng Yang,et al.  Preliminary study on zinc–air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction , 2009 .

[17]  C. Basha,et al.  Process Parameters and Kinetics for the Electrochemical Generation of Cerium(IV) Methanesulphonate from Cerium(III) Methanesulphonate , 2008 .

[18]  Xindong Wang,et al.  Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery , 2008 .

[19]  Yanzhi Sun,et al.  Study on a new single flow acid Cu–PbO2 battery , 2008 .

[20]  Gareth Kear,et al.  A novel flow battery—A lead-acid battery based on an electrolyte with soluble lead(II) V. Studies of the lead negative electrode , 2008 .

[21]  Li Zhang,et al.  Study of zinc electrodes for single flow zinc/nickel battery application , 2008 .

[22]  François Lapicque,et al.  Investigation of optimal conditions for zinc electrowinning from aqueous sulfuric acid electrolytes , 2007 .

[23]  Frank C. Walsh,et al.  Numerical simulation of the current, potential and concentration distributions along the cathode of a rotating cylinder Hull cell , 2007 .

[24]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[25]  Yuezhou Wei,et al.  Electro-Oxidation of Concentrated Ce(III) at Carbon Felt Anode in Nitric Acid Media , 2006 .

[26]  Derek Pletcher,et al.  A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II): IV. The influence of additives , 2005 .

[27]  Derek Pletcher,et al.  A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II). III. The influence of conditions on battery performance , 2005 .

[28]  R. Wills,et al.  A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II) , 2004 .

[29]  V. N. Misra,et al.  Zinc electrowinning from acidic sulphate solutions Part IV: Effects of perfluorocarboxylic acids , 2004 .

[30]  Maria Skyllas-Kazacos,et al.  Novel vanadium chloride/polyhalide redox flow battery , 2003 .

[31]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[32]  S. Iwasa,et al.  A study of the Ce(III)/Ce(IV) redox couple for redox flow battery application , 2002 .

[33]  D. Linden Handbook Of Batteries , 2001 .

[34]  M. Matlosz,et al.  Primary current distribution in the Hull cell and related trapezoidal geometries , 1992 .

[35]  D. J. Mackinnon,et al.  The effects of antimony and glue on zinc electrowinning from Kidd Creek electrolyte , 1990 .

[36]  M. Morita,et al.  A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte , 1988 .

[37]  M. Matlosz,et al.  Secondary Current Distribution in a Hull Cell Boundary Element and Finite Element Simulation and Experimental Verification , 1987 .

[38]  Maria Skyllas-Kazacos,et al.  Efficient Vanadium Redox Flow Cell , 1987 .

[39]  Anthony G. Fane,et al.  New All‐Vanadium Redox Flow Cell , 1986 .

[40]  J. Mcbreen RECHARGEABLE ZINC BATTERIES , 1984 .

[41]  R. T. Galasco,et al.  Enhancing Performance of the Ti(III)/Ti(IV) Couple for Redox Battery Applications , 1981 .

[42]  J. Jorné,et al.  The zinc-chlorine battery: half-cell overpotential measurements , 1979 .

[43]  R. T. Galasco,et al.  Discharge Characteristics of a Soluble Iron‐Titanium Battery System , 1979 .

[44]  R. C. Knechtli,et al.  Zinc‐Bromine Secondary Battery , 1977 .

[45]  E. Rideal The Fuel Cell , 1966, Nature.

[46]  Yvonne Freeh,et al.  Handbook Of Batteries , 2016 .

[47]  D. Hall,et al.  An electrochemical study on the positive electrode side of the zinc–cerium hybrid redox flow battery , 2014 .

[48]  张世明,et al.  Cerium-zinc redox flow battery: Positive half-cell electrolyte studies , 2011 .

[49]  David Linden,et al.  Handbook of batteries and fuel cells , 1984 .

[50]  H. E. WATSON,et al.  Industrial Electrochemistry , 1941, Nature.

[51]  J. Jorni,et al.  The zinc-chlorine battery : half-cell overpotential measurements , 2022 .