A Prioritized Adaptive Scheme for Multimedia Services over IEEE 802.11 WLANs

IEEE 802.11e protocol enables QoS differentiation between different traffic types, but requires MAC layer support and assigns traffic with static priority. This paper proposes an intelligent Prioritized Adaptive Scheme (iPAS) to provide QoS differentiation for heterogeneous multimedia delivery over wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. Unlike existing QoS differentiation solutions, the priority level of individual streams in iPAS is variable and considers service types and network delivery QoS parameters (i.e. delay, jitter, and packet loss rate). A bandwidth estimation technique is adopted to provide network conditions and the IEEE 802.21 framework is used to enable control information exchange between network components without modifying existing MAC protocol. Simulations and real life tests demonstrate how better results are obtained when employing iPAS than when either IEEE 802.11 DCF or 802.11e EDCA mechanisms are used. The iPAS key performance benefits are as follows: 1) better fairness in bandwidth allocation; 2) higher throughput than 802.11 DCF and 802.11e EDCA with up to 38% and 20%, respectively; 3) enables definite throughput and delay differentiation between streams.

[1]  John Wroclawski,et al.  The Use of RSVP with IETF Integrated Services , 1997, RFC.

[2]  Donald F. Towsley,et al.  Modeling TCP Reno performance: a simple model and its empirical validation , 2000, TNET.

[3]  Matthew J. Zekauskas,et al.  A One-way Delay Metric for IPPM , 1999, RFC.

[4]  Víctor Carrascal Frías,et al.  A game-theoretic multipath routing for video-streaming services over Mobile Ad Hoc Networks , 2011, Comput. Networks.

[5]  Weifa Liang,et al.  Cross-Layer Framework for QoS Support in Wireless Multimedia Sensor Networks , 2012, IEEE Transactions on Multimedia.

[6]  Deborah Estrin,et al.  RAP: An end-to-end rate-based congestion control mechanism for realtime streams in the Internet , 1999, IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320).

[7]  Elaine Rich,et al.  User Modeling via Stereotypes , 1998, Cogn. Sci..

[8]  W. Richard Stevens,et al.  TCP/IP Illustrated, Volume 1: The Protocols , 1994 .

[9]  Yung-Chang Chen,et al.  Cross-Layer Packet Retry Limit Adaptation for Video Transport Over Wireless LANs , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[10]  Mohsen Guizani,et al.  Bandwidth Aggregation-Aware Dynamic QoS Negotiation for Real-Time Video Streaming in Next-Generation Wireless Networks , 2009, IEEE Transactions on Multimedia.

[11]  Gabriel-Miro Muntean,et al.  iVoIP: an intelligent bandwidth management scheme for VoIP in WLANs , 2014, Wirel. Networks.

[12]  Zheng Wang,et al.  An Architecture for Differentiated Services , 1998, RFC.

[13]  Liam Murphy,et al.  Objective and subjective evaluation of QOAS video streaming over broadband networks , 2005, IEEE Transactions on Network and Service Management.

[14]  Miska M. Hannuksela,et al.  RTP Payload Format for H.264 Video , 2005, RFC.

[15]  Philip F. Chimento,et al.  IP Packet Delay Variation Metric for IP Performance Metrics (IPPM) , 2002, RFC.

[16]  Henning Schulzrinne,et al.  RTP: A Transport Protocol for Real-Time Applications , 1996, RFC.

[17]  Liam Murphy,et al.  A new adaptive multimedia streaming system for all-IP multi-service networks , 2004, IEEE Transactions on Broadcasting.

[18]  Tatsuya Suda,et al.  Market-Based Resource Allocation for Service Overlay Networks , 2009, 2009 IEEE 14th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks.

[19]  Raj Jain,et al.  A Quantitative Measure Of Fairness And Discrimination For Resource Allocation In Shared Computer Systems , 1998, ArXiv.

[20]  Stephan Aier,et al.  Implementing Non-functional Service Descriptions in SOAs , 2006, TEAA.

[21]  George Varghese,et al.  Efficient fair queueing using deficit round-robin , 1996, TNET.

[22]  A. M. Abdullah,et al.  Wireless lan medium access control (mac) and physical layer (phy) specifications , 1997 .

[23]  Mihaela van der Schaar,et al.  Adaptive MAC Protocols Using Memory for Networks With Critical Traffic , 2011, IEEE Transactions on Signal Processing.

[24]  Mihaela van der Schaar,et al.  Providing adaptive QoS to layered video over wireless local area networks through real-time retry limit adaptation , 2004, IEEE Transactions on Multimedia.

[25]  Ekram Hossain,et al.  Wireless Fountain Coding with IEEE 802.11e Block ACK for Media Streaming in Wireline-cum-WiFi Networks: A Performance Study , 2011, IEEE Transactions on Mobile Computing.

[26]  Liam Murphy,et al.  Adaptive pre-recorded multimedia streaming , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[27]  Frank Eliassen,et al.  A resource and context model for mobile middleware , 2006, Personal and Ubiquitous Computing.

[28]  Hongke Zhang,et al.  CMT-QA: Quality-Aware Adaptive Concurrent Multipath Data Transfer in Heterogeneous Wireless Networks , 2013, IEEE Transactions on Mobile Computing.

[29]  Luca Vollero,et al.  Providing Service Guarantees in 802.11e EDCA WLANs with Legacy Stations , 2010, IEEE Transactions on Mobile Computing.

[30]  Xue Liu,et al.  End-to-end delay control of multimedia applications over multihop wireless links , 2008, TOMCCAP.

[31]  Susana Sargento,et al.  IEEE 802.21 Information services deployment for heterogeneous mobile environments , 2011, IET Commun..

[32]  Periklis Chatzimisios,et al.  Performance analysis of IEEE 802.11 DCF in presence of transmission errors , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[33]  Matthew J. Zekauskas,et al.  A One-way Packet Loss Metric for IPPM , 1999, RFC.

[34]  Gabriel-Miro Muntean,et al.  MBE: Model-Based Available Bandwidth Estimation for IEEE 802.11 Data Communications , 2012, IEEE Transactions on Vehicular Technology.

[35]  Robert D. Stewart SCTP Partial Reliability Extension , 2003 .

[36]  Mihaela van der Schaar,et al.  Cross Layer Design and Analysis of Multiuser Wireless Video Streaming Over 802.11e EDCA , 2009, IEEE Signal Process. Lett..

[37]  Boriana L. Milenova,et al.  Fuzzy and neural approaches in engineering , 1997 .

[38]  Albert Banchs,et al.  Distributed weighted fair queuing in 802.11 wireless LAN , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[39]  Klara Nahrstedt,et al.  QoS-Aware service management for component-based distributed applications , 2008, TOIT.

[40]  Mihaela van der Schaar,et al.  Cognitive MAC Protocols Using Memory for Distributed Spectrum Sharing Under Limited Spectrum Sensing , 2011, IEEE Transactions on Communications.

[41]  Cheng-Zhong Xu,et al.  eQoS: Provisioning of Client-Perceived End-to-End QoS Guarantees in Web Servers , 2006, IEEE Transactions on Computers.

[42]  Xiaojiang Du,et al.  A Cross-Layer Approach for Frame Transmissions of MPEG-4 over the IEEE 802.11e Wireless Local Area Networks , 2008, 2008 IEEE Wireless Communications and Networking Conference.

[43]  Gabriel-Miro Muntean,et al.  A novel bandwidth estimation algorithm for IEEE 802.11 TCP data transmissions , 2012, 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW).

[44]  J.F. Smith,et al.  Fuzzy Logic Based Resource Manager for a Team of UAVs , 2006, NAFIPS 2006 - 2006 Annual Meeting of the North American Fuzzy Information Processing Society.

[45]  Cristina Hava Muntean,et al.  A QoS-aware adaptive Web-based system , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[46]  Miguel López-Benítez,et al.  Common Radio Resource Management Algorithms for Multimedia Heterogeneous Wireless Networks , 2011, IEEE Transactions on Mobile Computing.

[47]  Rui L. Aguiar,et al.  Using an open-source IEEE 802.21 implementation for network-based localized mobility management , 2011, IEEE Communications Magazine.

[48]  Hu Yaoguang,et al.  A game theoretic approach to product-mix resource allocation , 2010, 2010 5th IEEE Conference on Industrial Electronics and Applications.

[49]  Behzad Bordbar,et al.  Model-Driven Quality of Service for Web Services: An Aspect-Oriented Approach , 2008, 2008 IEEE International Conference on Web Services.

[50]  Paolo Bellavista,et al.  Dynamic and context-aware streaming adaptation to smooth quality degradation due to IEEE 802.11 performance anomaly , 2008, The Journal of Supercomputing.

[51]  Victor Fajardo,et al.  IEEE 802.21: Media independent handover: Features, applicability, and realization , 2009, IEEE Communications Magazine.

[52]  Paolo Bellavista,et al.  IMS-based presence service with enhanced scalability and guaranteed QoS for interdomain enterprise mobility , 2009, IEEE Wireless Communications.

[53]  Gabriel-Miro Muntean,et al.  Region of Interest-Based Adaptive Multimedia Streaming Scheme , 2008, IEEE Transactions on Broadcasting.

[54]  Ganesh Venkatesan Multimedia streaming over 802.11 links [Industry Perspectives] , 2010, IEEE Wireless Communications.

[55]  David L. Black,et al.  An Architecture for Differentiated Service , 1998 .

[56]  Yan Yan,et al.  Research on the decision of manufacturing resource allocation based on game theoretic approach , 2011, 2011 6th IEEE Conference on Industrial Electronics and Applications.

[57]  Paramvir Bahl,et al.  Distributed Fair Scheduling in a Wireless LAN , 2005, IEEE Trans. Mob. Comput..

[58]  Nj Piscataway,et al.  Wireless LAN medium access control (MAC) and physical layer (PHY) specifications , 1996 .

[59]  Gabriel-Miro Muntean,et al.  iPAS: An user perceived quality-based intelligent Prioritized Adaptive Scheme for IPTV in Wireless Home Networks , 2010, 2010 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB).

[60]  Jörg Widmer,et al.  TCP Friendly Rate Control (TFRC): Protocol Specification , 2008, RFC.