Fibrils Connect Microtubule Tips with Kinetochores: A Mechanism to Couple Tubulin Dynamics to Chromosome Motion

[1]  J. McIntosh,et al.  The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion , 2008, Proceedings of the National Academy of Sciences.

[2]  Judith Berman,et al.  Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres , 2008, The Journal of cell biology.

[3]  J. McIntosh,et al.  Different assemblies of the DAM1 complex follow shortening microtubules by distinct mechanisms , 2008, Proceedings of the National Academy of Sciences.

[4]  Yumi Kim,et al.  CENP-E combines a slow, processive motor and a flexible coiled coil to produce an essential motile kinetochore tether , 2008, The Journal of cell biology.

[5]  Y. Gachet,et al.  Sister kinetochore recapture in fission yeast occurs by two distinct mechanisms, both requiring Dam1 and Klp2. , 2008, Molecular biology of the cell.

[6]  J. McIntosh,et al.  In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions , 2007, Proceedings of the National Academy of Sciences.

[7]  T. Davis,et al.  Rings, bracelets, sleeves, and chevrons: new structures of kinetochore proteins. , 2007, Trends in cell biology.

[8]  Tomoyuki U. Tanaka,et al.  Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles , 2007, The Journal of cell biology.

[9]  Stefan Westermann,et al.  Structures and functions of yeast kinetochore complexes. , 2007, Annual review of biochemistry.

[10]  Tamir Gonen,et al.  Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis , 2007, Nature Cell Biology.

[11]  B. McEwen,et al.  The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions , 2007, Nature Cell Biology.

[12]  C. Lehner,et al.  Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes , 2007, Chromosoma.

[13]  E. Morrison Action and interactions at microtubule ends , 2007, Cellular and Molecular Life Sciences.

[14]  A. Desai,et al.  The Conserved KMN Network Constitutes the Core Microtubule-Binding Site of the Kinetochore , 2006, Cell.

[15]  Andrea Musacchio,et al.  Kinetochore Microtubule Dynamics and Attachment Stability Are Regulated by Hec1 , 2006, Cell.

[16]  J. McIntosh,et al.  Microtubule depolymerization can drive poleward chromosome motion in fission yeast , 2006, The EMBO journal.

[17]  S. Jablonski,et al.  Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells , 2006, The Journal of cell biology.

[18]  Viji M. Draviam,et al.  The human kinetochore proteins Nnf1R and Mcm21R are required for accurate chromosome segregation , 2006, The EMBO journal.

[19]  Trisha N Davis,et al.  The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Bruce F. McEwen,et al.  Kinetochores Use a Novel Mechanism for Coordinating the Dynamics of Individual Microtubules , 2006, Current Biology.

[21]  Stefan Westermann,et al.  The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends , 2006, Nature.

[22]  D. Compton,et al.  Functional Roles of Poleward Microtubule Flux During Mitosis , 2006, Cell cycle.

[23]  J. McIntosh,et al.  Force production by disassembling microtubules , 2005, Nature.

[24]  T. Toda,et al.  The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast , 2005, The EMBO journal.

[25]  E. Nogales,et al.  Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly , 2005, Nature.

[26]  J. McIntosh,et al.  Force production by depolymerizing microtubules: a theoretical study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  E. Nogales,et al.  Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex. , 2005, Molecular cell.

[28]  P. Sorger,et al.  The yeast DASH complex forms closed rings on microtubules , 2005, Nature Structural &Molecular Biology.

[29]  I. Arnal,et al.  CLIP-170/Tubulin-Curved Oligomers Coassemble at Microtubule Ends and Promote Rescues , 2004, Current Biology.

[30]  Anthony A. Hyman,et al.  Morphologically distinct microtubule ends in the mitotic centrosome of Caenorhabditis elegans , 2003, The Journal of cell biology.

[31]  J. McIntosh,et al.  The use of filter membranes for high‐pressure freezing of cell monolayers , 2003, Journal of microscopy.

[32]  J. McIntosh,et al.  High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. , 1999, Molecular biology of the cell.

[33]  E. Salmon,et al.  The vertebrate cell kinetochore and its roles during mitosis. , 1998, Trends in cell biology.

[34]  Anthony A. Hyman,et al.  Structural changes at microtubule ends accompanying GTP hydrolysis: Information from a slowly hydrolyzable analogue of GTP, guanylyl (α,β)methylenediphosphonate , 1998 .

[35]  D. Mastronarde Dual-axis tomography: an approach with alignment methods that preserve resolution. , 1997, Journal of structural biology.

[36]  S. Fuller,et al.  Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates , 1995, The Journal of cell biology.

[37]  J. McIntosh,et al.  Minus-end-directed motion of kinesin–coated microspheres driven by microtubule depolymerization , 1995, Nature.

[38]  J. McIntosh,et al.  Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro , 1995, The Journal of cell biology.

[39]  E. Mandelkow,et al.  Microtubule dynamics and microtubule caps: a time-resolved cryo- electron microscopy study , 1991, The Journal of cell biology.

[40]  J. McIntosh,et al.  Microtubule depolymerization promotes particle and chromosome movement in vitro , 1991, The Journal of cell biology.

[41]  M. Kirschner,et al.  Polewards chromosome movement driven by microtubule depolymerization in vitro , 1988, Nature.

[42]  D. Heermann Computer Simulation Methods in Theoretical Physics , 1986 .

[43]  T. L. Hill Theoretical problems related to the attachment of microtubules to kinetochores. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Desai,et al.  Molecular architecture of the kinetochore–microtubule interface , 2008, Nature Reviews Molecular Cell Biology.

[45]  J. McIntosh,et al.  Chromosome-microtubule interactions during mitosis. , 2002, Annual review of cell and developmental biology.

[46]  A. Hyman,et al.  Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (alpha,beta)methylenediphosphonate. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[48]  Anthony N. Burkitt,et al.  Computer-Simulation Methods , 1990 .