Numerical algebraic geometry and algebraic kinematics

In this article, the basic constructs of algebraic kinematics (links, joints, and mechanism spaces) are introduced. This provides a common schema for many kinds of problems that are of interest in kinematic studies. Once the problems are cast in this algebraic framework, they can be attacked by tools from algebraic geometry. In particular, we review the techniques of numerical algebraic geometry, which are primarily based on homotopy methods. We include a review of the main developments of recent years and outline some of the frontiers where further research is occurring. While numerical algebraic geometry applies broadly to any system of polynomial equations, algebraic kinematics provides a body of interesting examples for testing algorithms and for inspiring new avenues of work.

[1]  Jan Verschelde,et al.  A Method for Tracking Singular Paths with Application to the Numerical Irreducible Decomposition , 2002 .

[2]  A. Morgan,et al.  Computing singular solutions to polynomial systems , 1992 .

[3]  Adolf Karger Architecture singular planar parallel manipulators , 2003 .

[4]  Zhonggang Zeng,et al.  Computing the multiplicity structure in solving polynomial systems , 2005, ISSAC.

[5]  Jan Verschelde,et al.  Using Monodromy to Decompose Solution Sets of Polynomial Systems into Irreducible Components , 2001 .

[6]  Qingsong Xu,et al.  Kinematic analysis and design of a new 3-DOF translational parallel manipulator , 2006 .

[7]  Clément Gosselin,et al.  Kinematics and Singularity Analysis of a Novel Type of 3-CRR 3-DOF Translational Parallel Manipulator , 2002, Int. J. Robotics Res..

[8]  Xianwen Kong,et al.  Type Synthesis of 3-DOF Translational Parallel Manipulators Based on Screw Theory , 2004 .

[9]  S. Roberts On Three‐bar Motion in Plane Space , 1875 .

[10]  Jan Verschelde,et al.  Solving Polynomial Systems Equation by Equation , 2008 .

[11]  A. Morgan,et al.  Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages , 1992 .

[12]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[13]  J. Hauenstein,et al.  Mechanism mobility and a local dimension test , 2011 .

[14]  B. Roth,et al.  Synthesis of Path-Generating Mechanisms by Numerical Methods , 1963 .

[15]  Roland Sauerbrey,et al.  Biography , 1992, Ann. Pure Appl. Log..

[16]  Andrew J. Sommese,et al.  Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components , 2000, SIAM J. Numer. Anal..

[17]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[18]  A. Morgan A transformation to avoid solutions at infinity for polynomial systems , 1986 .

[19]  Charles W. Wampler,et al.  Closure to “Discussion of ‘Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages’” (1997, ASME J. Mech. Des., 119, pp. 149–150) , 1997 .

[20]  H. Alt,et al.  Über die Erzeugung gegebener ebener Kurven mit Hilfe des Gelenkviereckes , 1923 .

[21]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms , 1995 .

[22]  Felice Ronga,et al.  Stewart platforms without computer , 1995 .

[23]  A. Morgan,et al.  Solving the Kinematics of the Most General Six- and Five-Degree-of-Freedom Manipulators by Continuation Methods , 1985 .

[24]  Tien-Yien Li Numerical Solution of Polynomial Systems by Homotopy Continuation Methods , 2003 .

[25]  Ferdinand Freudenstein,et al.  Numerical Solution of Systems of Nonlinear Equations , 1963, JACM.

[26]  Jonathan D. Hauenstein,et al.  Regeneration homotopies for solving systems of polynomials , 2010, Math. Comput..

[27]  A. Morgan Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems , 1987 .

[28]  Mauro C. Beltrametti,et al.  The Adjunction Theory of Complex Projective Varieties , 1995 .

[29]  Manfred Husty,et al.  Kinematik und Robotik , 1997 .

[30]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[31]  Takeo Ojika,et al.  Modified deflation algorithm for the solution of singular problems. I. A system of nonlinear algebraic equations , 1987 .

[32]  T. Willmore Algebraic Geometry , 1973, Nature.

[33]  Adolf Karger Architecturally singular non-planar parallel manipulators , 2008 .

[34]  Tsung-Lin Lee,et al.  HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method , 2008, Computing.

[35]  Cayley On Three‐Bar Motion , 1875 .

[36]  Hong Y. Lee,et al.  Displacement analysis of the general spatial 7-link 7R mechanism , 1988 .

[37]  Anton Leykin,et al.  Numerical algebraic geometry , 2020, Applications of Polynomial Systems.

[38]  ZHONGGANG ZENG The Closedness Subspace Method for Computing the Multiplicity Structure of a Polynomial System , 2008 .

[39]  Eugene L. Allgower,et al.  Continuation and path following , 1993, Acta Numerica.

[40]  K. Zindler Geometrie der Dynamen , 1903 .

[41]  Andrew J. Sommese,et al.  Exceptional Sets and Fiber Products , 2008, Found. Comput. Math..

[42]  Chris Peterson,et al.  A numerical-symbolic algorithm for computing the multiplicity of a component of an algebraic set , 2006, J. Complex..

[43]  Charles W. Wampler,et al.  A product-decomposition bound for Bezout numbers , 1995 .

[44]  Jonathan D. Hauenstein,et al.  A Numerical Local Dimension Test for Points on the Solution Set of a System of Polynomial Equations , 2009, SIAM J. Numer. Anal..

[45]  Ferdinand Freudenstein,et al.  Synthesis of Path-Generating Mechanisms by Means of a Programmed Digital Computer , 1959 .

[46]  Bernard Mourrain,et al.  The 40 “generic” positions of a parallel robot , 1993, ISSAC '93.

[47]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[48]  Andrew J. Sommese Numerical Irreducible Decomposition using Projections from Points on the Components , 2001 .

[49]  G. Gogu Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations , 2004 .

[50]  A. Morgan,et al.  Computing singular solutions to nonlinear analytic systems , 1990 .

[51]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[52]  Mauro C. Beltrametti,et al.  A method for tracking singular paths with application to the numerical irreducible decomposition , 2002 .

[53]  Charles W. Wampler FORWARD DISPLACEMENT ANALYSIS OF GENERAL SIX-IN-PARALLEL SPS (STEWART) PLATFORM MANIPULATORS USING SOMA COORDINATES , 1996 .

[54]  A. Morgan,et al.  A power series method for computing singular solutions to nonlinear analytic systems , 1992 .

[55]  T. Y. Li Numerical solution of multivariate polynomial systems by homotopy continuation methods , 2008 .

[56]  Ea Evert Dijksman Motion Geometry of Mechanisms , 1976 .

[57]  Masha Sosonkina,et al.  Algorithm 857: POLSYS_GLP—a parallel general linear product homotopy code for solving polynomial systems of equations , 2006, TOMS.

[58]  Jonathan D. Hauenstein,et al.  Stepsize control for adaptive multiprecision path tracking , 2008 .

[59]  K. H. Hunt,et al.  Kinematic geometry of mechanisms , 1978 .

[60]  Jonathan D. Hauenstein,et al.  A Parallel Endgame , 2010 .

[61]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems , 2008 .

[62]  Jonathan D. Hauenstein,et al.  Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .

[63]  Manfred L. Husty,et al.  Algebraic methods in mechanism analysis and synthesis , 2007, Robotica.

[64]  Ilian A. Bonev The true origins of parallel robots , 2003 .

[65]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[66]  Alfred Kempe,et al.  How to Draw a Straight Line: A Lecture on Linkages , 2009 .

[67]  F. Drexler Eine Methode zur berechnung sämtlicher Lösungen von Polynomgleichungssystemen , 1977 .

[68]  Zhonggang Zeng,et al.  Multiple zeros of nonlinear systems , 2011, Math. Comput..

[69]  A. Morgan,et al.  Coefficient-parameter polynomial continuation , 1989 .

[70]  Gregory Walsh,et al.  Kinematics of a novel three DOF translational platform , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[71]  Jan Verschelde,et al.  Advances in Polynomial Continuation for Solving Problems in Kinematics , 2004 .

[72]  C. B. García,et al.  On the Number of Solutions to Polynomial Systems of Equations , 1980 .

[73]  Clément Gosselin,et al.  Conceptual Design and Dimensional Synthesis of a Novel 2-DOF Translational Parallel Robot for Pick-and-Place Operations , 2004 .

[74]  Charles W. Wampler,et al.  Finding All Real Points of a Complex Curve , 2006 .

[75]  T. Ojika,et al.  Deflation algorithm for the multiple roots of a system of nonlinear equations , 1983 .

[76]  E. Allgower,et al.  Numerical path following , 1997 .

[77]  J. Yorke,et al.  The cheater's homotopy: an efficient procedure for solving systems of polynomial equations , 1989 .

[78]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[79]  de J. Groot,et al.  Bibliography on kinematics , 1970 .

[80]  Layne T. Watson,et al.  Generalized Linear Product Homotopy Algorithms and the Computation of Reachable Surfaces , 2004, J. Comput. Inf. Sci. Eng..

[81]  Anton Leykin,et al.  Newton's method with deflation for isolated singularities of polynomial systems , 2006, Theor. Comput. Sci..

[82]  D. Lazard,et al.  On the Representation of Rigid-Body Motions and its Application to Generalized Platform Manipulators , 1993 .

[83]  H. H.,et al.  Geometrie der Dynamen , 1904, Nature.

[84]  Hai-Jun Su,et al.  A Constrained Homotopy Technique for Excluding Unwanted Solutions From Polynomial Equations Arising in Kinematics Problems , 2010 .

[85]  Jonathan D. Hauenstein,et al.  Regenerative cascade homotopies for solving polynomial systems , 2011, Appl. Math. Comput..

[86]  M.L. Husty,et al.  Self-motions of Griffis-Duffy type parallel manipulators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[87]  A. Morgan,et al.  A homotopy for solving general polynomial systems that respects m-homogeneous structures , 1987 .

[88]  Jon M. Selig Geometric Fundamentals of Robotics, Second Edition , 2005, Monographs in Computer Science.

[89]  Andrew J. Sommese,et al.  An intrinsic homotopy for intersecting algebraic varieties , 2005, J. Complex..

[90]  Masha Sosonkina,et al.  Algorithm 777: HOMPACK90: a suite of Fortran 90 codes for globally convergent homotopy algorithms , 1997, TOMS.

[91]  Gilchrist,et al.  GMSolid: Interactive Modeling for Design and Analysis of Solids , 1982, IEEE Computer Graphics and Applications.

[92]  Jonathan D. Hauenstein,et al.  Adaptive Multiprecision Path Tracking , 2008, SIAM J. Numer. Anal..

[93]  Joseph James Duffy,et al.  A displacement analysis of the general spatial 7-link, mechanism , 1980 .

[94]  M. Raghavan The Stewart platform of general geometry has 40 configurations , 1993 .

[95]  Andrew J. Sommese,et al.  Numerical Homotopies to Compute Generic Points on Positive Dimensional Algebraic Sets , 2000, J. Complex..

[96]  Andrew J. Sommese,et al.  Homotopies for Intersecting Solution Components of Polynomial Systems , 2004, SIAM J. Numer. Anal..

[97]  George Bruce Halsted Pafnutij Lvovitsch Tchebychev , 1895 .

[98]  Joe W. Harris,et al.  Principles of Algebraic Geometry: Griffiths/Principles , 1994 .

[99]  Andrew J. Sommese,et al.  Symmetric Functions Applied to Decomposing Solution Sets of Polynomial Systems , 2002, SIAM J. Numer. Anal..

[100]  Geoege Bruce Halsted Encyklopädie der mathematischen Wissenschaften , 1898 .

[101]  C. B. García,et al.  Finding all solutions to polynomial systems and other systems of equations , 1979, Math. Program..

[102]  Anton Leykin,et al.  Higher-Order Deflation for Polynomial Systems With Isolated Singular Solutions , 2006, math/0602031.

[103]  Ronald Cools,et al.  Symbolic homotopy construction , 2005, Applicable Algebra in Engineering, Communication and Computing.

[104]  Marco Carricato,et al.  A Family of 3-DOF Translational Parallel Manipulators , 2003 .

[105]  A. Morgan,et al.  Errata: Computing all solutions to polynomial systems using homotopy continuation , 1987 .

[106]  Frank-Olaf Schreyer,et al.  A family of exceptional Stewart-Gough mechanisms of genus 7 , 2009, 0902.2354.

[107]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[108]  Jonathan D. Hauenstein,et al.  Numerical Decomposition of the Rank-Deficiency Set of a Matrix of Multivariate Polynomials , 2009 .

[109]  J. Yorke,et al.  A homotopy method for locating all zeros of a system of polynomials , 1979 .

[110]  Steven M. Wise,et al.  Algorithm 801: POLSYS_PLP: a partitioned linear product homotopy code for solving polynomial systems of equations , 2000, TOMS.

[111]  M. Husty An algorithm for solving the direct kinematics of general Stewart-Gough platforms , 1996 .

[112]  Vincenzo Parenti-Castelli,et al.  A Translational 3-dof Parallel Manipulator , 1998 .

[113]  E. Study Von den Bewegungen und Umlegungen , 1891 .

[114]  Chris Peterson,et al.  Application of a Numerical Version of Terr Acini’s Lemma for Secants and Joins , 2008 .