A Random Forest-Cellular Automata modelling approach to explore future land use/cover change in Attica (Greece), under different socio-economic realities and scales.

[1]  L. Lin,et al.  A concordance correlation coefficient to evaluate reproducibility. , 1989, Biometrics.

[2]  A. Veldkamp,et al.  CLUE: a conceptual model to study the Conversion of Land Use and its Effects , 1996 .

[3]  H. Mooney,et al.  Human Domination of Earth’s Ecosystems , 1997, Renewable Energy.

[4]  R. White,et al.  High-resolution integrated modelling of the spatial dynamics of urban and regional systems , 2000 .

[5]  E. Ostrom,et al.  The concept of scale and the human dimensions of global change: a survey , 2000, Ecological Economics.

[6]  J. W. Lewis,et al.  A note on concordance correlation coefficient. , 2000, PDA journal of pharmaceutical science and technology.

[7]  H. Briassoulis Analysis of Land Use Change: Theoretical and Modeling Approaches , 2000 .

[8]  K. Kok,et al.  Evaluating impact of spatial scales on land use pattern analysis in Central America , 2001 .

[9]  A. Veldkamp,et al.  The Need for Scale Sensitive Approaches in Spatially Explicit Land Use Change Modeling , 2001 .

[10]  A. Burnicki,et al.  Stochastic Simulation of Land-Cover Change Using Geostatistics and Generalized Additive Models , 2002 .

[11]  Timothy Evans,et al.  A Review and Assessment of Land-Use Change Models Dynamics of Space, Time, and Human Choice , 2002 .

[12]  PETER H. VERBURG,et al.  Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model , 2002, Environmental management.

[13]  B. Soares-Filho,et al.  dinamica—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier , 2002 .

[14]  N. Cox,et al.  A Note on the Concordance Correlation Coefficient , 2002 .

[15]  Anthony Gar-On Yeh,et al.  Neural-network-based cellular automata for simulating multiple land use changes using GIS , 2002, Int. J. Geogr. Inf. Sci..

[16]  Alex Hagen,et al.  Fuzzy set approach to assessing similarity of categorical maps , 2003, Int. J. Geogr. Inf. Sci..

[17]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[18]  V. Meentemeyer Geographical perspectives of space, time, and scale , 1989, Landscape Ecology.

[19]  Paul Schot,et al.  Land use change modelling: current practice and research priorities , 2004 .

[20]  Steven M. Manson,et al.  Agent-based modeling and genetic programming for modeling land change in the Southern Yucatán Peninsular Region of Mexico , 2005 .

[21]  Suzana Dragicevic,et al.  Assessing cellular automata model behaviour using a sensitivity analysis approach , 2006, Comput. Environ. Urban Syst..

[22]  P. Verburg,et al.  Downscaling of land use change scenarios to assess the dynamics of European landscapes , 2006 .

[23]  S. An,et al.  The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China , 2007, Landscape Ecology.

[24]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[25]  Zhiyong Hu,et al.  Modeling urban growth in Atlanta using logistic regression , 2007, Comput. Environ. Urban Syst..

[26]  Xia Li,et al.  Simulating complex urban development using kernel-based non-linear cellular automata , 2008 .

[27]  Jonathan Cheung-Wai Chan,et al.  Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery , 2008 .

[28]  Emmanuel V. Marmaras,et al.  Infrastructure‐Related Urban Sprawl: Mega‐Events and Hybrid Peri‐Urban Landscapes in Southern Europe , 2008 .

[29]  Xia Li,et al.  Cellular automata for simulating land use changes based on support vector machines , 2008, Comput. Geosci..

[30]  Carlo Lavalle,et al.  Urban land use scenarios for a tourist region in Europe: Applying the MOLAND model to Algarve, Portugal , 2009 .

[31]  John Sayas,et al.  New Facets of Urban Segregation in Southern Europe , 2009 .

[32]  Sotirios Koukoulas,et al.  Planning, competitiveness and sprawl in the Mediterranean city: The case of Athens , 2010 .

[33]  Lien Poelmans,et al.  Complexity and performance of urban expansion models , 2010, Comput. Environ. Urban Syst..

[34]  Mark Rounsevell,et al.  Developing qualitative scenario storylines for environmental change assessment , 2010 .

[35]  Andrés Manuel García,et al.  Cellular automata models for the simulation of real-world urban processes: A review and analysis , 2010 .

[36]  Arnold K. Bregt,et al.  Core Principles and Concepts in Land-Use Modelling: A Literature Review , 2011 .

[37]  J. van Vliet,et al.  Comparison of scale and scaling issues in integrated land-use models for policy support , 2011 .

[38]  Verena Rieser,et al.  Modelling the impacts of land system dynamics on human well-being: Using an agent-based approach to cope with data limitations in Koper, Slovenia , 2012, Comput. Environ. Urban Syst..

[39]  Apostolos Lagarias,et al.  Urban sprawl simulation linking macro-scale processes to micro-dynamics through cellular automata, an application in Thessaloniki, Greece , 2012 .

[40]  P. Atkinson,et al.  Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture , 2012 .

[41]  K. Clarke,et al.  Assessing simulated land use/cover maps using similarity and fragmentation indices , 2012 .

[42]  Jamal Jokar Arsanjani,et al.  Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[43]  Verena Rieser,et al.  Agent-based modelling of land use dynamics and residential quality of life for future scenarios , 2013, Environ. Model. Softw..

[44]  Damaris Zurell,et al.  Collinearity: a review of methods to deal with it and a simulation study evaluating their performance , 2013 .

[45]  Robert Gilmore Pontius,et al.  Opportunities to Improve Impact, Integration, and Evaluation of Land Change Models , 2013 .

[46]  George N. Zaimes,et al.  Quantifying spatio-temporal patterns of forest fragmentation in Hymettus Mountain, Greece , 2014, Comput. Environ. Urban Syst..

[47]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[48]  J. Chéry,et al.  Common features and different trajectories of land cover changes in six Western Mediterranean urban regions , 2015 .

[49]  Xiang Zhao,et al.  Land Use Allocation Based on a Multi-Objective Artificial Immune Optimization Model: An Application in Anlu County, China , 2015 .

[50]  Jonah Gamba,et al.  Simulating Urban Growth Using a Random Forest-Cellular Automata (RF-CA) Model , 2015, ISPRS Int. J. Geo Inf..

[51]  Dimitrios Gounaridis,et al.  Urban land cover thematic disaggregation, employing datasets from multiple sources and RandomForests modeling , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[52]  Yuek Ming Ho,et al.  The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: A review , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[53]  J. Syvitski,et al.  Methods and approaches to modelling the Anthropocene , 2016 .

[54]  Mark E. Borsuk,et al.  Methods for translating narrative scenarios into quantitative assessments of land use change , 2016, Environ. Model. Softw..

[55]  J. Hidalgo,et al.  Combining narratives and modelling approaches to simulate fine scale and long-term urban growth scenarios for climate adaptation , 2016, Environ. Model. Softw..

[56]  Dimitrios Gounaridis,et al.  Land cover of Greece, 2010: a semi-automated classification using random forests , 2016 .

[57]  Jorge Rocha,et al.  Exploring the impacts of future tourism development on land use/cover changes , 2016 .

[58]  Peter H Verburg,et al.  Continental-scale quantification of landscape values using social media data , 2016, Proceedings of the National Academy of Sciences.

[59]  Steffen Lauf,et al.  Balancing demand and supply of multiple urban ecosystem services on different spatial scales , 2016 .

[60]  Catharina J.E. Schulp,et al.  Cultural landscapes and behavioral transformations: An agent-based model for the simulation and discussion of alternative landscape futures in East Lesvos, Greece , 2017 .

[61]  Xiaoping Liu,et al.  A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects , 2017 .

[62]  Anastasia Panori,et al.  SimAthens: A spatial microsimulation approach to the estimation and analysis of small area income distributions and poverty rates in the city of Athens, Greece , 2016, Comput. Environ. Urban Syst..

[63]  M. Braito,et al.  Incorporating multilevel values into the social-ecological systems framework , 2018 .

[64]  P. Verburg,et al.  From concepts to practice: combining different approaches to understand drivers of landscape change , 2018 .

[65]  Dimitrios Gounaridis,et al.  Exploring prospective urban growth trends under different economic outlooks and land-use planning scenarios: The case of Athens , 2018 .

[66]  Elias Symeonakis,et al.  Incorporating Density in Spatiotemporal Land Use/Cover Change Patterns: The Case of Attica, Greece , 2018, Remote. Sens..

[67]  Ioannis Chorianopoulos,et al.  Austerity urbanism: Rescaling and collaborative governance policies in Athens , 2019 .