Hydrogen-bonds in molecular solids - from biological systems to organic electronics.

Hydrogen-bonding (H-bonding) is a relatively strong, highly directional, and specific noncovalent interaction present in many organic molecules, and notably is responsible for supramolecular ordering in biological systems. The H-bonding interactions play a role in many organic electrically conducting materials - in particular in those related to biology, e.g. melanin and indigo. This article aims to highlight recent work on application of nature-inspired H-bonded organic molecules in organic electronic devices. Three topics are covered in this brief review: (1) electrical and ionic conduction in natural H-bonded systems, (2) semiconducting properties of H-bonded organic pigments, and (3) exploitation of H-bonding for supramolecular assembly of organic conductors. H-bonding interactions are ubiquitous in biology, thus making the study of H-bonded organic semiconductors highly pertinent where interfacing of electronics with biological systems is desired.

[1]  George G Malliaras,et al.  Organic bioelectronics: a new era for organic electronics. , 2013, Biochimica et biophysica acta.

[2]  C. B. Nielsen,et al.  Recent Advances in the Development of Semiconducting DPP‐Containing Polymers for Transistor Applications , 2013, Advanced materials.

[3]  Mihai Irimia-Vladu,et al.  Hydrogen‐Bonded Semiconducting Pigments for Air‐Stable Field‐Effect Transistors , 2013, Advanced materials.

[4]  P. Meredith,et al.  Electronic and optoelectronic materials and devices inspired by nature , 2013, Reports on progress in physics. Physical Society.

[5]  R. Gabrielsson,et al.  Electronic polymers and DNA self-assembled in nanowire transistors. , 2013, Small.

[6]  Changduk Yang,et al.  Inversion of Dominant Polarity in Ambipolar Polydiketopyrrolopyrrole with Thermally Removable Groups , 2012 .

[7]  J. Wagner,et al.  Bipolar charge transport in organic field-effect transistors: Enabling high mobilities and transport of photo-generated charge carriers by a molecular passivation layer , 2012 .

[8]  Michael G Debije,et al.  Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems. , 2012, Angewandte Chemie.

[9]  S. Bauer,et al.  Intermolecular hydrogen-bonded organic semiconductors—Quinacridone versus pentacene , 2012 .

[10]  Mihai Irimia-Vladu,et al.  Green and biodegradable electronics , 2012 .

[11]  Y. Yamashita,et al.  Ambipolar behavior of hydrogen-bonded diketopyrrolopyrrole-thiophene co-oligomers formed from their soluble precursors. , 2012, Organic letters.

[12]  Mihai Irimia-Vladu,et al.  Indigo and Tyrian Purple – From Ancient Natural Dyes to Modern Organic Semiconductors , 2012 .

[13]  C. Bettinger,et al.  Biomaterials‐Based Electronics: Polymers and Interfaces for Biology and Medicine , 2012, Advanced healthcare materials.

[14]  S. Bauer,et al.  Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors , 2012, Organic electronics.

[15]  B. Powell,et al.  On the origin of electrical conductivity in the bio-electronic material melanin , 2012 .

[16]  He Tian,et al.  Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics. , 2012, Chemical communications.

[17]  Danqing Liu,et al.  Hydrogen-bonded dihydrotetraazapentacenes. , 2012, Organic letters.

[18]  Chao Zhong,et al.  Self-assembled chitin nanofiber templates for artificial neural networks , 2012 .

[19]  Mihai Irimia-Vladu,et al.  Indigo ‐ A Natural Pigment for High Performance Ambipolar Organic Field Effect Transistors and Circuits , 2012, Advanced materials.

[20]  K. Nakayama,et al.  Solution processable hydrogen-bonded perylene bisimide assemblies organizing into lamellar architectures. , 2011, Chemical communications.

[21]  S. Bauer,et al.  Ambipolar organic field effect transistors and inverters with the natural material Tyrian Purple , 2011 .

[22]  Chao Zhong,et al.  A Chitin Nanofiber Ink for Airbrushing, Replica Molding, and Microcontact Printing of Self‐assembled Macro‐, Micro‐, and Nanostructures , 2011, Advanced materials.

[23]  P. Leleux,et al.  Highly Conformable Conducting Polymer Electrodes for In Vivo Recordings , 2011, Advanced materials.

[24]  Chao Zhong,et al.  A polysaccharide bioprotonic field-effect transistor. , 2011, Nature communications.

[25]  Nicola Cioffi,et al.  Carbon based materials for electronic bio-sensing , 2011 .

[26]  P. Ambrico,et al.  Melanin Layer on Silicon: an Attractive Structure for a Possible Exploitation in Bio‐Polymer Based Metal–Insulator–Silicon Devices , 2011, Advanced materials.

[27]  G. Desiraju Reflections on the Hydrogen Bond in Crystal Engineering , 2011 .

[28]  S. Barlow,et al.  Perylene-3,4,9,10-tetracarboxylic acid diimides: synthesis, physical properties, and use in organic electronics. , 2011, The Journal of organic chemistry.

[29]  Antonio Facchetti,et al.  π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications† , 2011 .

[30]  Mihai Irimia-Vladu,et al.  Exotic materials for bio-organic electronics , 2011 .

[31]  Mark A Ratner,et al.  Rylene and Related Diimides for Organic Electronics , 2011, Advanced materials.

[32]  S. Bauer,et al.  Biocompatible and Biodegradable Materials for Organic Field‐Effect Transistors , 2010 .

[33]  S. Bauer,et al.  Environmentally sustainable organic field effect transistors , 2010 .

[34]  P. Ambrico,et al.  Hysteresis-type current–voltage characteristics in Au/eumelanin/ITO/glass structure: Towards melanin based memory devices , 2010 .

[35]  Ching Wan Tang,et al.  Effects of active layer thickness and thermal annealing on polythiophene: Fullerene bulk heterojunction photovoltaic devices , 2010 .

[36]  Wei Xu,et al.  Organic Single Crystal Field‐effect Transistors Based on 6H‐pyrrolo[3,2–b:4,5–b´]bis[1,4]benzothiazine and its Derivatives , 2010, Advanced materials.

[37]  G. Gilli,et al.  Hydrogen bond models and theories: The dual hydrogen bond model and its consequences , 2010 .

[38]  Jianbin Xu,et al.  N-heteroquinones: quadruple weak hydrogen bonds and n-channel transistors. , 2010, Chemical communications.

[39]  Zhenan Bao,et al.  A crystal-engineered hydrogen-bonded octachloroperylene diimide with a twisted core: an n-channel organic semiconductor. , 2010, Angewandte Chemie.

[40]  V. M. Kucherov,et al.  Polarons in DNA Oligomers , 2010 .

[41]  James G. Grote,et al.  Bio-organic field effect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric , 2009 .

[42]  W. Mader,et al.  Quinacridone organic field effect transistors with significant stability by vacuum sublimation , 2009 .

[43]  Edwin Jager,et al.  Translating Electronic Currents to Precise Acetylcholine–Induced Neuronal Signaling Using an Organic Electrophoretic Delivery Device , 2009 .

[44]  David Nilsson,et al.  Active Control of Epithelial Cell‐Density Gradients Grown Along the Channel of an Organic Electrochemical Transistor , 2009, Advanced materials.

[45]  Robert Langer,et al.  Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. , 2009, Biomaterials.

[46]  E. W. Meijer,et al.  White-light emitting hydrogen-bonded supramolecular copolymers based on pi-conjugated oligomers. , 2009, Journal of the American Chemical Society.

[47]  Jiaxiong Wang Electrical conductivity of double stranded DNA measured with ac impedance spectroscopy , 2008 .

[48]  Daoben Zhu,et al.  6H-Pyrrolo[3,2-b:4,5-b′]bis[1,4]benzothiazines: facilely synthesized semiconductors for organic field-effect transistors , 2008 .

[49]  Jacques P. Bothma,et al.  Device‐Quality Electrically Conducting Melanin Thin Films , 2008 .

[50]  Hiroyuki Yanagisawa,et al.  Organic Field-Effect Transistor Devices Based on Latent Pigments of Unsubstituted Diketopyrrolopyrrole or Quinacridone , 2008 .

[51]  James G. Grote,et al.  Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric , 2007 .

[52]  M. Berggren,et al.  Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. , 2007, Nature materials.

[53]  David C. Martin,et al.  Electrochemical polymerization of conducting polymers in living neural tissue , 2007, Journal of neural engineering.

[54]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[55]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[56]  F. Leusen,et al.  Crystal structures of quinacridones , 2007 .

[57]  F. Leusen,et al.  Crystal structure prediction of organic pigments: quinacridone as an example , 2007, Journal of applied crystallography.

[58]  Paul Meredith,et al.  The physical and chemical properties of eumelanin. , 2006, Pigment cell research.

[59]  John E Anthony,et al.  Functionalized acenes and heteroacenes for organic electronics. , 2006, Chemical reviews.

[60]  J. Mizuguchi,et al.  Solution and solid-state spectra of quinacridone derivatives as viewed from the intermolecular hydrogen bond. , 2006, The journal of physical chemistry. B.

[61]  E. W. Meijer,et al.  Control of ambipolar thin film architectures by co-self-assembling oligo(p-phenylenevinylene)s and perylene bisimides. , 2006, Journal of the American Chemical Society.

[62]  H. Inokuchi The discovery of organic semiconductors. Its light and shadow , 2006 .

[63]  S. Valiyaveettil,et al.  Intramolecular hydrogen-bond-assisted planarization of asymmetrically functionalized alternating phenylene-pyridinylene copolymers. , 2005, Chemistry.

[64]  E. Conwell Charge transport in DNA in solution: the role of polarons. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  E. W. Meijer,et al.  About Supramolecular Assemblies of π-Conjugated Systems , 2005 .

[66]  Michael Meot-Ner,et al.  The ionic hydrogen bond. , 2005, Chemical reviews.

[67]  G. Grüner,et al.  Charge transfer and charge transport on the double helix , 2003, cond-mat/0309360.

[68]  G. Desiraju Crystal engineering. From molecules to materials , 2003 .

[69]  M. Imlau,et al.  Crystal structure analysis and extremely long-living light-induced metastable states in RbY[Fe(CN)5NO]2·10H2O and CsY[Fe(CN)5NO]2·10H2O , 2002 .

[70]  J. Howard,et al.  Protonation and subsequent intramolecular hydrogen bonding as a method to control chain structure and tune luminescence in heteroatomic conjugated polymers. , 2002, Journal of the American Chemical Society.

[71]  G. Lincke On quinacridones and their supramolecular mesomerism within the crystal lattice , 2002 .

[72]  Patrice Rannou,et al.  Processible conjugated polymers: from organic semiconductors to organic metals and superconductors , 2002 .

[73]  Cees Dekker,et al.  Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale , 2001 .

[74]  A. Heeger Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials* , 2001 .

[75]  C. Cooksey Tyrian Purple: 6,6’-Dibromoindigo and Related Compounds , 2001, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry.

[76]  Bernd Giese,et al.  Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling , 2001, Nature.

[77]  J. Mizuguchi Correlation between Crystal and Electronic Structures in Diketopyrrolopyrrole Pigments as Viewed from Exciton Coupling Effects , 2000 .

[78]  C. Dekker,et al.  Direct measurement of electrical transport through DNA molecules , 2000, Nature.

[79]  G. Lincke A review of thirty years of research on quinacridones. X-ray crystallography and crystal engineering , 2000 .

[80]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals and Polymers , 1999 .

[81]  H. Fink,et al.  Electrical conduction through DNA molecules , 1999, Nature.

[82]  S O Kelley,et al.  Electron transfer between bases in double helical DNA. , 1999, Science.

[83]  J. Barton,et al.  Charge Transfer through the DNA Base Stack , 1997 .

[84]  G. Lanzani,et al.  Optical probes of photoexcited states in films of linear trans-quinacridone , 1997 .

[85]  G. Lanzani,et al.  Ultrafast optical probes of electronic excited states in linear trans-quinacridone , 1996 .

[86]  W. Stampor,et al.  Electroabsorption study of excited states in hydrogen-bonding solids: epindolidione and linear trans-quinacridone , 1994 .

[87]  G. Zajac,et al.  The fundamental unit of synthetic melanin: a verification by tunneling microscopy of X-ray scattering results. , 1994, Biochimica et biophysica acta.

[88]  Kock Yee. Law,et al.  Organic photoconductive materials: recent trends and developments , 1993 .

[89]  K. Seddon,et al.  The hydrogen bond and crystal engineering , 1994 .

[90]  G. Desiraju C-H … O hydrogen bonding and the deliberate design of organic crystal structures , 1992 .

[91]  S. Jenekhe,et al.  Conjugated aromatic poly(azomethines). 1. Characterization of structure, electronic spectra, and processing of thin films from soluble complexes , 1991 .

[92]  J. Mizuguchi,et al.  Intermolecular charge transfer in 1,4‐dithioketo‐3,6‐diphenyl‐pyrrolo‐ [3,4‐c]‐pyrrole , 1989 .

[93]  Alan J. Heeger,et al.  Solitons in conducting polymers , 1988 .

[94]  H. Zollinger Color chemistry: Syntheses, properties, and applications of organic dyes and pigments , 1987 .

[95]  C. K. Chiang,et al.  Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x , 1978 .

[96]  J McGinness,et al.  Amorphous Semiconductor Switching in Melanins , 1974, Science.

[97]  D. D. Eley,et al.  Semiconductivity of organic substances. Part 9.—Nucleic acid in the dry state , 1962 .

[98]  K. Pitzer,et al.  The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry. , 1960 .

[99]  H. Inokuchi,et al.  On the Electrical Conductivity of Violanthrone, Iso‐Violanthrone, and Pyranthrone , 1950 .