A non-associative lattice-based public key cryptosystem

In this paper we will prove that a lattice-based public key cryptosystem based on non-associative algebra is not only feasible but also arguably more secure than the existing lattice based cryptosystems such as NTRU, because its lattice does not fully fit within circular and convolutional modular lattice (CCML). The underlying algebraic structure of the proposed non-associative cryptosystem is the power-associative and alternative octonions algebra which can be defined over any Dedekind domain such as convolution polynomial ring. Besides the detailed specification of the proposed cryptosystem, we have proved that the security of the proposed scheme relies on the difficulty of the finding shortest vector in a certain kind of lattice. Since there is no isomorphic matrix representation for octonions, the only method for attacking the proposed cryptosystem and finding a spurious key for decryption is to form a lattice of dimension 16.N which is eight times larger than the NTRU lattice. By reducing the dimension of the underlying convolution polynomial ring (N) and using optimization techniques, we can increase the encryption and decryption speed, to a level equal to NTRU. Mathematics Subject Classification (2000): 94A60, 11T71 Copyright © 2011 John Wiley & Sons, Ltd. (The simulation codes (in Maple and Java) are available from the authors upon request.)

[1]  Joseph H. Silverman,et al.  NTRU: A Ring-Based Public Key Cryptosystem , 1998, ANTS.

[2]  Terry Anderson,et al.  Using Peer Teams to Lead Online Discussions , 2002 .

[3]  J. Hoffstein,et al.  An introduction to mathematical cryptography , 2008 .

[4]  John H. Conway,et al.  On Quaternions and Octonions , 2003 .

[5]  Berk Sunar,et al.  Achieving NTRU with Montgomery Multiplication , 2003, IEEE Trans. Computers.

[6]  Joseph H. Silverman,et al.  NTRU in Constrained Devices , 2001, CHES.

[7]  Jung Woo Kim,et al.  Sliding Window Method for NTRU , 2007, ACNS.

[8]  Nicolas Gama,et al.  Predicting Lattice Reduction , 2008, EUROCRYPT.

[9]  Berk Sunar,et al.  Public Key Cryptography in Sensor Networks - Revisited , 2004, ESAS.

[10]  Joseph H. Silverman,et al.  Dimension Reduction Methods for Convolution Modular Lattices , 2001, CaLC.

[11]  Nicolas Gama,et al.  Symplectic Lattice Reduction and NTRU , 2006, EUROCRYPT.

[12]  G. Dixon,et al.  On quaternions and octonions: Their geometry, arithmetic, and symmetry , 2004 .

[13]  Bok-Min Goi,et al.  MaTRU: A New NTRU-Based Cryptosystem , 2005, INDOCRYPT.

[14]  Johannes A. Buchmann,et al.  Efficiency Improvement for NTRU , 2008, Sicherheit.

[15]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[16]  Ali Miri,et al.  NTRU over rings beyond $${\mathbb{Z}}$$ , 2010, Des. Codes Cryptogr..

[17]  J. Rotman Advanced Modern Algebra , 2002 .

[18]  Colleen Marie O'Rourke Efficient NTRU Implementations , 2002 .

[19]  Patrick Solé,et al.  CTRU, a polynomial analogue of NTRU , 2002 .

[20]  Yang Xiao,et al.  NTRU-based sensor network security: a low-power hardware implementation perspective , 2009, Secur. Commun. Networks.

[21]  Michael Schneider,et al.  Probabilistic Analysis of LLL Reduced Bases , 2009, Algorithms and Number Theory.

[22]  Ali Zakerolhosseini,et al.  NTRU-Like Public Key Cryptosystems beyond Dedekind Domain up to Alternative Algebra , 2010, Trans. Comput. Sci..

[23]  Joseph H. Silverman,et al.  Optimizations for NTRU , 2001 .

[24]  Adi Shamir,et al.  Lattice Attacks on NTRU , 1997, EUROCRYPT.

[25]  J. Silverman Title: Estimated Breaking times for Ntru Lattices , 1999 .

[26]  John C. Baez,et al.  The Octonions , 2001 .

[27]  Damien Stehlé,et al.  LLL on the Average , 2006, ANTS.

[28]  Joseph H. Silverman,et al.  Protecting NTRU Against Chosen Ciphertext and Reaction Attacks , 2000 .

[29]  Jens-Peter E Kaps,et al.  Cryptography for Ultra-Low Power Devices , 2006 .

[30]  Antoine Joux,et al.  A Chosen-Ciphertext Attack against NTRU , 2000, CRYPTO.

[31]  L. Dickson History of the Theory of Numbers , 1924, Nature.

[32]  Damien Stehlé,et al.  Low-Dimensional Lattice Basis Reduction Revisited , 2004, ANTS.

[33]  Amr Elmasry,et al.  Multipartite priority queues , 2008, TALG.

[34]  Frederik Vercauteren,et al.  Speed Records for NTRU , 2010, CT-RSA.