Approximation of boundary element matrices
暂无分享,去创建一个
[1] D. Gaier. Vorlesungen über Approximation im Komplexen , 1980 .
[2] W. Hackbusch. A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.
[3] W. Hackbusch,et al. On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .
[4] T. Sauer,et al. On multivariate Lagrange interpolation , 1995 .
[5] A. Brandt. Multilevel computations of integral transforms and particle interactions with oscillatory kernels , 1991 .
[6] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[7] Tomas Sauer,et al. On Bivariate Hermite Interpolation with Minimal Degree Polynomials , 2000, SIAM J. Numer. Anal..
[8] J. Phillips,et al. Some Empirical Results on Using Multipole-Accelerated Iterative Methods to Solve 3-D Potential Integral Equations , 1997 .
[9] Sergej Rjasanow,et al. Effective algorithms with circulant-block matrices , 1994 .
[10] V. Rokhlin. Rapid solution of integral equations of classical potential theory , 1985 .
[11] L. Mirsky. SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .
[12] Gene H. Golub,et al. Matrix computations , 1983 .
[13] S. Goreinov,et al. A Theory of Pseudoskeleton Approximations , 1997 .
[14] E. Tyrtyshnikov. Mosaic-Skeleton approximations , 1996 .
[15] V. Rokhlin,et al. Rapid Evaluation of Potential Fields in Three Dimensions , 1988 .
[16] Eugene E. Tyrtyshnikov. Mosaic Ranks and Skeletons , 1996, WNAA.
[17] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[18] Alex Yu. Yeremin,et al. Matrix-free iterative solution strategies for large dense linear systems , 1997, Numer. Linear Algebra Appl..
[19] Carl de Boor,et al. On the Sauer-Xu formula for the error in multivariate polynomial interpolation , 1996, Math. Comput..
[20] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[21] Boris N. Khoromskij,et al. A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.