Approximation of boundary element matrices

Summary. This article considers the problem of approximating a general asymptotically smooth function in two variables, typically arising in integral formulations of boundary value problems, by a sum of products of two functions in one variable. From these results an iterative algorithm for the low-rank approximation of blocks of large unstructured matrices generated by asymptotically smooth functions is developed. This algorithm uses only few entries from the original block and since it has a natural stopping criterion the approximative rank is not needed in advance.

[1]  D. Gaier Vorlesungen über Approximation im Komplexen , 1980 .

[2]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[3]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[4]  T. Sauer,et al.  On multivariate Lagrange interpolation , 1995 .

[5]  A. Brandt Multilevel computations of integral transforms and particle interactions with oscillatory kernels , 1991 .

[6]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[7]  Tomas Sauer,et al.  On Bivariate Hermite Interpolation with Minimal Degree Polynomials , 2000, SIAM J. Numer. Anal..

[8]  J. Phillips,et al.  Some Empirical Results on Using Multipole-Accelerated Iterative Methods to Solve 3-D Potential Integral Equations , 1997 .

[9]  Sergej Rjasanow,et al.  Effective algorithms with circulant-block matrices , 1994 .

[10]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[11]  L. Mirsky SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[14]  E. Tyrtyshnikov Mosaic-Skeleton approximations , 1996 .

[15]  V. Rokhlin,et al.  Rapid Evaluation of Potential Fields in Three Dimensions , 1988 .

[16]  Eugene E. Tyrtyshnikov Mosaic Ranks and Skeletons , 1996, WNAA.

[17]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[18]  Alex Yu. Yeremin,et al.  Matrix-free iterative solution strategies for large dense linear systems , 1997, Numer. Linear Algebra Appl..

[19]  Carl de Boor,et al.  On the Sauer-Xu formula for the error in multivariate polynomial interpolation , 1996, Math. Comput..

[20]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[21]  Boris N. Khoromskij,et al.  A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.