Coupled Finite and Boundary Element Methods for Vibro-Acoustic Interface Problems

We consider a symmetric coupling of finite and boundary element methods for a vibro-acoustic interface problem. While the time-harmonic vibrating structure is described by a finite element variational problem, we use the symmetric formulation of boundary integral equations to model the acoustic fluid in the unbounded exterior domain. When using the symmetric coupling we obtain a formulation which excludes spurious modes, and which is stable for almost all frequencies. In addition to a direct simulation we also consider the related eigenvalue problem which is nonlinear in the eigenfrequency, and which can be solved by using a contour integral approach. Numerical results are given.

[1]  Olaf Steinbach,et al.  Convergence Analysis of a Galerkin Boundary Element Method for the Dirichlet Laplacian Eigenvalue Problem , 2012, SIAM J. Numer. Anal..

[2]  Olaf Steinbach,et al.  A fast BE‐FE coupling scheme for partly immersed bodies , 2010 .

[3]  O. Steinbach Boundary integral equations for Helmholtz boundary value and transmission problems , 2012 .

[4]  Paul A. Martin,et al.  Fluid-Solid Interaction: Acoustic Scattering by a Smooth Elastic Obstacle , 1995, SIAM J. Appl. Math..

[5]  Olaf Steinbach,et al.  Boundary elment methods in linear elasticity: Can we avoid the symmetric formulation? , 2012 .

[6]  W. Beyn An integral method for solving nonlinear eigenvalue problems , 2012 .

[7]  O. Steinbach Coupled FE/BE Formulations for the Fluid–Structure Interaction , 2011 .

[8]  G. F. Roach,et al.  Weak Solutions of Fluid–Solid Interaction Problems , 2000 .

[9]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[10]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[11]  Daniel Kressner,et al.  Interpolation-based solution of a nonlinear eigenvalue problem in fluid-structure interaction , 2012 .

[12]  Miguel C. Junger,et al.  Sound, Structures, and Their Interaction , 1972 .

[13]  Dirk Pflüger,et al.  Lecture Notes in Computational Science and Engineering , 2010 .

[14]  Über die 1., 2. und 3. äußere Randwertaufgabe der Schwingungsgleichung ΔF + K2F = 0 , 1965 .

[15]  S. Rjasanow,et al.  The Fast Solution of Boundary Integral Equations , 2007 .

[16]  D. S. Jones,et al.  LOW-FREQUENCY SCATTERING BY A BODY IN LUBRICATED CONTACT , 1983 .