Crystal structure of the GreA transcript cleavage factor from Escherichia coli

[1]  S. Darst,et al.  Crystallization of GreA, a transcript cleavage factor from Escherichia coli. , 1994, Journal of molecular biology.

[2]  S Cusack,et al.  The 2.9 A crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). , 1994, Science.

[3]  H. Nelson,et al.  Crystal structure of the DNA binding domain of the heat shock transcription factor. , 1994, Science.

[4]  E. Geiduschek,et al.  RNA polymerase marching backward , 1993, Science.

[5]  S. Borukhov,et al.  Transcript cleavage factors from E. coli , 1993, Cell.

[6]  S. Borukhov,et al.  GreA protein: a transcription elongation factor from Escherichia coli. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Wood,et al.  Nucleotide sequence of the Rickettsia prowazekii greA homolog. , 1992, Nucleic acids research.

[8]  D. Luse,et al.  The RNA polymerase II ternary complex cleaves the nascent transcript in a 3'----5' direction in the presence of elongation factor SII. , 1992, Genes & development.

[9]  D. Reines Elongation factor-dependent transcript shortening by template-engaged RNA polymerase II. , 1992, The Journal of biological chemistry.

[10]  S. Borukhov,et al.  Mapping of a contact for the RNA 3' terminus in the largest subunit of RNA polymerase. , 1991, The Journal of biological chemistry.

[11]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[12]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[13]  A. Das,et al.  The nucleotide sequence of greA, a suppressor gene that restores growth of an Escherichia coli RNA polymerase mutant at high temperature. , 1990, Nucleic acids research.

[14]  S. Cusack,et al.  A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å , 1990, Nature.

[15]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[16]  H. Schägger,et al.  Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. , 1987, Analytical biochemistry.

[17]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[18]  A. Woody,et al.  Photoaffinity labeling of DNA-dependent RNA polymerase from Escherichia coli with 8-azidoadenosine 5'-triphosphate. , 1984, Biochemistry.

[19]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[20]  G. Drapeau,et al.  Substrate specificity of a proteolytic enzyme isolated from a mutant of Pseudomonas fragi. , 1980, The Journal of biological chemistry.

[21]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[22]  T. Vanaman,et al.  Specific chemical cleavage in high yield at the amino peptide bonds of cysteine and cystine residues. , 1973, The Journal of biological chemistry.

[23]  G. N. Ramachandran,et al.  Stereochemistry of polypeptide chain configurations. , 1963, Journal of molecular biology.

[24]  Peter Main,et al.  Histogram matching as a new density modification technique for phase refinement and extension of protein molecules , 1990 .

[25]  J S Richardson,et al.  Schematic drawings of protein structures. , 1985, Methods in enzymology.