Precision Matrix Estimation With ROPE
暂无分享,去创建一个
M. Sillanpää | J. Kemppainen | M. O. Kuismin | J. T. Kemppainen | M. J. Sillanpää | M. Kuismin | M. Sillanpää | Markku Kuismin | Jukka Kemppainen
[1] C. R. Henderson,et al. Best linear unbiased estimation and prediction under a selection model. , 1975, Biometrics.
[2] Olivier Ledoit,et al. Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011, 1207.5322.
[3] H. D. Patterson,et al. Recovery of inter-block information when block sizes are unequal , 1971 .
[4] Ting Yuan,et al. A coordinate descent algorithm for sparse positive definite matrix estimation , 2013, Stat. Anal. Data Min..
[5] P. VanRaden,et al. Efficient methods to compute genomic predictions. , 2008, Journal of dairy science.
[6] T. Cai,et al. A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.
[7] E. Stacy. A Generalization of the Gamma Distribution , 1962 .
[8] J. Friedman,et al. New Insights and Faster Computations for the Graphical Lasso , 2011 .
[9] Xinwei Deng,et al. Penalized Covariance Matrix Estimation Using a Matrix-Logarithm Transformation , 2013 .
[10] A. U.S.,et al. Sparse Estimation of a Covariance Matrix , 2010 .
[11] Olivier Ledoit,et al. Honey, I Shrunk the Sample Covariance Matrix , 2003 .
[12] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[13] N. L. Johnson,et al. Multivariate Analysis , 1958, Nature.
[14] D. Reich,et al. Population Structure and Eigenanalysis , 2006, PLoS genetics.
[15] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[16] Zitong Li,et al. Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection , 2012, Theoretical and Applied Genetics.
[17] Seung-Jean Kim,et al. Maximum Likelihood Covariance Estimation with a Condition Number Constraint , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.
[18] Peter Bühlmann,et al. High-Dimensional Statistics with a View Toward Applications in Biology , 2014 .
[19] Michael Wolf,et al. Spectrum Estimation: A Unified Framework for Covariance Matrix Estimation and PCA in Large Dimensions , 2013, J. Multivar. Anal..
[20] Mohsen Pourahmadi,et al. High-Dimensional Covariance Estimation: Pourahmadi/High-Dimensional , 2013 .
[21] N. Higham,et al. Numerical analysis of a quadratic matrix equation , 2000 .
[22] Jeffrey B. Endelman,et al. Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP , 2011 .
[23] Mohsen Pourahmadi,et al. High-Dimensional Covariance Estimation , 2013 .
[24] Olivier Ledoit,et al. A well-conditioned estimator for large-dimensional covariance matrices , 2004 .
[25] W. Wonham. On a Matrix Riccati Equation of Stochastic Control , 1968 .
[26] Wessel N. van Wieringen,et al. Ridge estimation of inverse covariance matrices from high-dimensional data , 2014, Comput. Stat. Data Anal..
[27] Weidong Liu,et al. Fast and adaptive sparse precision matrix estimation in high dimensions , 2012, J. Multivar. Anal..
[28] Mikko J Sillanpää,et al. Use of Wishart Prior and Simple Extensions for Sparse Precision Matrix Estimation , 2016, PloS one.
[29] A. Laub. A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.
[30] Harry Dym,et al. Linear Algebra in Action , 2006, Graduate Studies in Mathematics.
[31] David I. Warton,et al. Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices , 2008 .
[32] Jianhua Z. Huang,et al. Covariance matrix selection and estimation via penalised normal likelihood , 2006 .
[33] Robert J. Vanderbei,et al. The fastclime package for linear programming and large-scale precision matrix estimation in R , 2014, J. Mach. Learn. Res..
[34] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[35] Albrecht E. Melchinger,et al. Shrinkage estimation of the genomic relationship matrix can improve genomic estimated breeding values in the training set , 2015, Theoretical and Applied Genetics.
[36] José Crossa,et al. Genomic‐Enabled Prediction Based on Molecular Markers and Pedigree Using the Bayesian Linear Regression Package in R , 2010, The plant genome.
[37] Jianqing Fan,et al. NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES. , 2009, The annals of applied statistics.
[38] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[39] José Crossa,et al. Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers , 2010, Genetics.
[40] Jianhua Z. Huang. Covariance selection and estimation via penalised normal likelihood , 2005 .