Parallel Performance Analysis of Bacterial Biofilm Simulation Models

Modelling and simulation of bacterial biofilms is a computationally expensive process necessitating use of parallel computing. Fluid dynamics and advection-consumption models can be decoupled and solved to handle the fluid-solute-bacterial interactions. Data exchange between the two processes add up to the communication overheads. The heterogenous distribution of bacteria within the simulation domain further leads to non-uniform load distribution in the parallel system. We study the effect of load imbalance and communication overheads on the overall performance of simulation at different stages of biofilm growth. We develop a model to optimize the parallelization procedure for computing the growth dynamics of bacterial biofilms.

[1]  Peter A. Wilderer,et al.  Influence of detachment mechanisms on competition in biofilms , 2000 .

[2]  Maciej Cytowski,et al.  Large-Scale Parallel Simulations of 3D Cell Colony Dynamics , 2014, Computing in Science & Engineering.

[3]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[4]  Thomas Zeiser,et al.  Performance evaluation of a parallel sparse lattice Boltzmann solver , 2008, J. Comput. Phys..

[5]  James A. Warren,et al.  FiPy: Partial Differential Equations with Python , 2009, Computing in Science & Engineering.

[6]  J. Glazier,et al.  Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. , 2008, Mathematical biosciences and engineering : MBE.

[7]  G. C. Fox,et al.  Solving Problems on Concurrent Processors , 1988 .

[8]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[9]  T. Tolker-Nielsen,et al.  Growing and Analyzing Biofilms in Flow Cells , 2006, Current protocols in microbiology.

[10]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[11]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[12]  Gábor Závodszky,et al.  Load balancing of parallel cell-based blood flow simulations , 2018, J. Comput. Sci..

[13]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[14]  Patric Nilsson,et al.  Dynamic modelling of cell death during biofilm development. , 2012, Journal of theoretical biology.

[16]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[17]  T. Tolker-Nielsen,et al.  Growing and Analyzing Biofilms in Flow Chambers , 2011, Current protocols in microbiology.

[18]  Johannes S. Vrouwenvelder,et al.  Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices , 2009 .

[19]  S. Levin,et al.  Coevolutionary arms races between bacteria and bacteriophage. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Long Chen FINITE ELEMENT METHOD , 2013 .

[21]  O. Levenspiel,et al.  Extended monod kinetics for substrate, product, and cell inhibition , 1988, Biotechnology and bioengineering.

[22]  Zhihui Wang,et al.  Multiscale agent-based cancer modeling , 2009, Journal of mathematical biology.

[23]  Z. Lewandowski,et al.  The double substrate growth kinetics of Pseudomonas aeruginosa , 2003 .

[24]  J. Kreft,et al.  Microbial motility involvement in biofilm structure formation--a 3D modelling study. , 2007, Water science and technology : a journal of the International Association on Water Pollution Research.

[25]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[26]  Emmanuel Lefrançois,et al.  Finite Element Method: Dhatt/Finite Element Method , 2012 .

[27]  J J Heijnen,et al.  Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. , 2001, Biotechnology and bioengineering.

[28]  Michael Lees,et al.  Inhibition of quorum sensing in a computational biofilm simulation , 2012, Biosyst..