Induced chirality of guest molecules encapsulated into a dendritic box
暂无分享,去创建一个
[1] E. Meijer,et al. Encapsulation of Guest Molecules into a Dendritic Box , 1994, Science.
[2] A. Beezer,et al. The synthesis of chiral dendritic molecules based on the repeat unit L-glutamic acid , 1994 .
[3] H. Chow,et al. Synthesis and characterization of optically active, homochiral dendrimers , 1994 .
[4] D. Seebach,et al. Chiral Dendrimers from Tris(hydroxymethyl)methane Derivatives , 1994 .
[5] D. Seebach,et al. Chirale Tris(hydroxymethyl)methan‐Derivate als Synthesebausteine für chirale Dendrimere , 1994 .
[6] Jean M. J. Fréchet,et al. A “Branched-Monomer Approach” for the Rapid Synthesis of Dendimers† , 1994 .
[7] Karen L. Wooley,et al. Verzweigte Monomere als Quelle für einen schnelleren Zugang zu Dendrimeren , 1994 .
[8] R. Mülhaupt,et al. Polynitrile‐ and Polyamine‐Functional Poly(trimethylene imine) Dendrimers , 1993 .
[9] R. Mülhaupt,et al. Polynitril‐ und polyaminfunktionalisierte Poly(trimethylenimin)‐Dendrimere , 1993 .
[10] E. W. Meijer,et al. Poly(propylenimin)‐Dendrimere: Synthese in größerem Maßstab durch heterogen katalysierte Hydrierungen , 1993 .
[11] E. W. Meijer,et al. Poly(propylene imine) Dendrimers: Large‐Scale Synthesis by Hetereogeneously Catalyzed Hydrogenations , 1993 .
[12] Jeffrey S. Moore,et al. Rascher Aufbau großer Phenylacetylen‐Dendrimere mit Moleküldurchmessern bis zu 12.5 Nanometern , 1993 .
[13] Jeffrey S. Moore,et al. Rapid Construction of Large‐size Phenylacetylene Dendrimers up to 12.5 Nanometers in Molecular Diameter , 1993 .
[14] Robert H. E. Hudson,et al. Nucleic acid dendrimers: novel biopolymer structures , 1993 .
[15] D. Tirrell,et al. Chain dynamics in poly(amidoamine) dendrimers: a study of proton NMR relaxation parameters , 1992 .
[16] Jean M. J. Fréchet,et al. Hyperbranched macromolecules via a novel double-stage convergent growth approach , 1991 .
[17] D. A. Tomalia,et al. Starburst‐Dendrimere: Kontrolle von Größe, Gestalt, Oberflächenchemie, Topologie und Flexibilität beim Übergang von Atomen zu makroskopischer Materie , 1990 .
[18] William A. Goddard,et al. Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .
[19] William A. Goddard,et al. Starburst dendrimers. 5. Molecular shape control , 1989 .
[20] T. Kunitake,et al. Enhanced Circular Dichroism and Phase Separation of Azobenzene-Containing Chiral Bilayer , 1984 .
[21] T. Kunitake,et al. Large induced circular dichroism of methyl orange bound to chiral bilayer membranes. Its extreme sensitivity to the phase transition and the chemical structure of the membrane. , 1981 .
[22] T. Kunitake,et al. ENHANCED CIRCULAR DICHROISM AND FLUIDITY OF DISK-LIKE AGGREGATES OF A CHIRAL, SINGLE-CHAIN AMPHIPHILE , 1980 .
[23] H. Chow,et al. Synthesis and structure–optical rotation relationships of homochiral, monodisperse, tartaric acid-based dendrimers , 1994 .
[24] Timothy M. Miller,et al. Dendritic analogues of engineering plastics : a general one-step synthesis of dendritic polyaryl ethers , 1993 .
[25] G. Newkome,et al. Chemistry of micelles series. 22. Cascade polymers: synthesis and characterization of four-directional spherical dendritic macromolecules based on adamantane , 1992 .
[26] Xiaofeng Lin,et al. Polytryptophane terminated dendritic macromolecules , 1991 .
[27] Michael B. Hall,et al. Dendritic macromolecules: synthesis of starburst dendrimers , 1986 .
[28] James R. Dewald,et al. A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .