Induced chirality of guest molecules encapsulated into a dendritic box

The internal cavities of a dendritic box, constructed from poly(propylene imine) dendrimers and enantiomerically pure N-tBOC-L-phenylalanine hydroxysuccinimide esters, possess distinct chiral properties as was demonstrated with the observation of induced optical activity of a variety of guests encapsulated in the box. This induced optical activity of guests is measured with CD (circular dichroism) spectroscopy and is remarkable as the optical activity of the amino acid outer shell itself is vanishingly small. Although small, the effects observed are significant in many cases, whilst in other cases the guests encapsulated do not show an induced CD. Indications for an enforced close proximity and some kind of ordering of guests is found by the observation of an exciton-coupled CD spectrum in the case of four Bengal Rose molecules encapsulated in a single dendritic box. It is shown that the effects are dependent on the solvent used and the history of the sample. Therefore, the observation of induced optical activity can be used to study the mode of encapsulation of the guests into the box.

[1]  E. Meijer,et al.  Encapsulation of Guest Molecules into a Dendritic Box , 1994, Science.

[2]  A. Beezer,et al.  The synthesis of chiral dendritic molecules based on the repeat unit L-glutamic acid , 1994 .

[3]  H. Chow,et al.  Synthesis and characterization of optically active, homochiral dendrimers , 1994 .

[4]  D. Seebach,et al.  Chiral Dendrimers from Tris(hydroxymethyl)methane Derivatives , 1994 .

[5]  D. Seebach,et al.  Chirale Tris(hydroxymethyl)methan‐Derivate als Synthesebausteine für chirale Dendrimere , 1994 .

[6]  Jean M. J. Fréchet,et al.  A “Branched-Monomer Approach” for the Rapid Synthesis of Dendimers† , 1994 .

[7]  Karen L. Wooley,et al.  Verzweigte Monomere als Quelle für einen schnelleren Zugang zu Dendrimeren , 1994 .

[8]  R. Mülhaupt,et al.  Polynitrile‐ and Polyamine‐Functional Poly(trimethylene imine) Dendrimers , 1993 .

[9]  R. Mülhaupt,et al.  Polynitril‐ und polyaminfunktionalisierte Poly(trimethylenimin)‐Dendrimere , 1993 .

[10]  E. W. Meijer,et al.  Poly(propylenimin)‐Dendrimere: Synthese in größerem Maßstab durch heterogen katalysierte Hydrierungen , 1993 .

[11]  E. W. Meijer,et al.  Poly(propylene imine) Dendrimers: Large‐Scale Synthesis by Hetereogeneously Catalyzed Hydrogenations , 1993 .

[12]  Jeffrey S. Moore,et al.  Rascher Aufbau großer Phenylacetylen‐Dendrimere mit Moleküldurchmessern bis zu 12.5 Nanometern , 1993 .

[13]  Jeffrey S. Moore,et al.  Rapid Construction of Large‐size Phenylacetylene Dendrimers up to 12.5 Nanometers in Molecular Diameter , 1993 .

[14]  Robert H. E. Hudson,et al.  Nucleic acid dendrimers: novel biopolymer structures , 1993 .

[15]  D. Tirrell,et al.  Chain dynamics in poly(amidoamine) dendrimers: a study of proton NMR relaxation parameters , 1992 .

[16]  Jean M. J. Fréchet,et al.  Hyperbranched macromolecules via a novel double-stage convergent growth approach , 1991 .

[17]  D. A. Tomalia,et al.  Starburst‐Dendrimere: Kontrolle von Größe, Gestalt, Oberflächenchemie, Topologie und Flexibilität beim Übergang von Atomen zu makroskopischer Materie , 1990 .

[18]  William A. Goddard,et al.  Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .

[19]  William A. Goddard,et al.  Starburst dendrimers. 5. Molecular shape control , 1989 .

[20]  T. Kunitake,et al.  Enhanced Circular Dichroism and Phase Separation of Azobenzene-Containing Chiral Bilayer , 1984 .

[21]  T. Kunitake,et al.  Large induced circular dichroism of methyl orange bound to chiral bilayer membranes. Its extreme sensitivity to the phase transition and the chemical structure of the membrane. , 1981 .

[22]  T. Kunitake,et al.  ENHANCED CIRCULAR DICHROISM AND FLUIDITY OF DISK-LIKE AGGREGATES OF A CHIRAL, SINGLE-CHAIN AMPHIPHILE , 1980 .

[23]  H. Chow,et al.  Synthesis and structure–optical rotation relationships of homochiral, monodisperse, tartaric acid-based dendrimers , 1994 .

[24]  Timothy M. Miller,et al.  Dendritic analogues of engineering plastics : a general one-step synthesis of dendritic polyaryl ethers , 1993 .

[25]  G. Newkome,et al.  Chemistry of micelles series. 22. Cascade polymers: synthesis and characterization of four-directional spherical dendritic macromolecules based on adamantane , 1992 .

[26]  Xiaofeng Lin,et al.  Polytryptophane terminated dendritic macromolecules , 1991 .

[27]  Michael B. Hall,et al.  Dendritic macromolecules: synthesis of starburst dendrimers , 1986 .

[28]  James R. Dewald,et al.  A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .