Efficient preconditioning of the linearized Navier-Stokes
暂无分享,去创建一个
H. Elman | A. Wathen | D. Silvester | D. Kay
[1] V. I. Lebedev,et al. Iterative methods for solving operator equations with a spectrum contained in several intervals , 1969 .
[2] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[3] O. Pironneau,et al. Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .
[4] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[5] T. Manteuffel,et al. Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .
[6] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[7] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[8] Thomas A. Manteuffel,et al. Orthogonal error methods , 1987 .
[9] A. Wathen. Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .
[10] J. Cahouet,et al. Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .
[11] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[12] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[13] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[14] D. R. Fokkema,et al. BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .
[15] R. Freund,et al. A new Krylov-subspace method for symmetric indefinite linear systems , 1994 .
[16] J. C. Simo,et al. Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations , 1994 .
[17] A. Wathen,et al. Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .
[18] A. Wathen,et al. The convergence rate of the minimal residual method for the Stokes problem , 1995 .
[19] Howard C. Elman,et al. Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..
[20] David J. Silvester,et al. Implicit algorithms and their linearization for the transient incompressible Navier-Stokes equations , 1997 .
[21] J. Pasciak,et al. Iterative techniques for time dependent Stokes problems , 1997 .
[22] A. Wathen,et al. The convergence of iterative solution methods for symmetric and indefinite linear systems , 1997 .
[23] Stefan Turek,et al. Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.
[24] G. Stoyan. Towards discrete velte decompositions and narrow bounds for inf-sup constants , 1999 .
[25] A. Wathen,et al. On parameter choice and iterative convergence for stabilised discretisations of advection-diffusion problems , 1999 .
[26] DAVID KAY,et al. A Posteriori Error Estimation for Stabilized Mixed Approximations of the Stokes Equations , 1999, SIAM J. Sci. Comput..
[27] D. Kay,et al. A Green's function preconditioner for the steady−state Navier−Stokes equations , 1999 .
[28] Howard C. Elman,et al. Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..
[29] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..
[30] J. Szmelter. Incompressible flow and the finite element method , 2001 .