The promise of cryogenic solid-state lasers
暂无分享,去创建一个
[1] B. Bendow,et al. Temperature dependence of the refractive index of alkaline earth fluorides. , 1976, Applied optics.
[2] Fuxi Gan,et al. Dependence of the Yb 3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet , 2003 .
[3] M M Murnane,et al. 0.2-TW laser system at 1kHz. , 1997, Optics letters.
[4] David C. Brown,et al. Methods For Scaling High Average Power Laser Performance , 1986, Photonics West - Lasers and Applications in Science and Engineering.
[5] T. Fan,et al. Thermal Coefficients of the Optical Path Length and Refractive Index in YAG. , 1998, Applied optics.
[6] T. Fan. Heat generation in Nd:YAG and Yb:YAG , 1993 .
[7] Walter Koechner,et al. Solid-State Laser Engineering , 1976 .
[8] David C. Brown. Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers , 1997 .
[9] Gorachand Ghosh,et al. Handbook of thermo-optic coefficients of optical materials with applications , 1998 .
[10] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[11] Robert L. Byer,et al. Modeling and CW operation of a quasi-three-level 946 nm Nd: YAG laser , 1987 .
[12] D. Brown,et al. Active-mirror amplifiers: Progress and prospects , 1981, IEEE Journal of Quantum Electronics.
[13] L. G. DeShazer,et al. Nd:YAG quantum efficiency and related radiative properties , 1989 .
[14] K. K. Lee,et al. High average power active-mirror amplifier. , 1986, Applied optics.
[15] P. Moulton. Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .
[16] G Ghosh. Thermo-optic coefficients of LiNbO(3), LiIO(3), and LiTaO(3) nonlinear crystals. , 1994, Optics letters.
[17] D. Nikogosyan,et al. Properties of Optical and Laser-Related Materials: A Handbook , 1997 .
[18] T. Kasamatsu,et al. Temperature dependence and optimization of 970-nm diode-pumped Yb:YAG and Yb:LuAG lasers. , 1999, Applied optics.
[19] D. Wood. Energy Levels of Yb3+ in Garnets , 1963 .
[20] R. K. Kirby,et al. Thermophysical Properties of Matter - the TPRC Data Series. Volume 13. Thermal Expansion - Nonmetallic Solids , 1977 .
[21] M M Murnane,et al. High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system. , 2001, Optics letters.
[22] A. Kaminskiĭ,et al. Crystalline Lasers: Physical Processes and Operating Schemes , 1996 .
[23] P. A. Schulz,et al. Liquid-nitrogen-cooled Ti:Al/sub 2/O/sub 3/ laser , 1991 .
[24] B. Pazol,et al. Index of refraction measurement on sapphire at low temperatures and visible wavelengths. , 1993, Applied optics.
[25] D. Wood,et al. Spectrum of Yb3+ in Yttrium Gallium Garnet , 1960 .
[26] Rustin L. Laycock,et al. Integrated diamond sapphire laser. , 2003, Optics express.
[27] Tso Yee Fan,et al. Cooled Yb:YAG for high-power solid state lasers , 1998, Defense, Security, and Sensing.
[28] David C. Brown,et al. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers , 2001 .
[29] R. Cone,et al. Yb:YAG absorption at ambient and cryogenic temperatures , 2005, IEEE Journal of Selected Topics in Quantum Electronics.
[30] T. Fan,et al. Room-temperature diode-pumped Yb:YAG laser. , 1991, Optics letters.
[31] Stephen A. Payne,et al. Laser demonstration of Yb/sub 3/Al/sub 5/O/sub 12/ (YbAG) and materials properties of highly doped Yb:YAG , 2001 .
[32] Tso Yee Fan,et al. 165-W cryogenically cooled Yb:YAG laser. , 2004, Optics letters.
[33] David S. Sumida,et al. Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers , 1997 .
[34] T. Graf,et al. Reduction of thermally induced lenses in Nd:YAG with low temperatures , 2004, IEEE Journal of Quantum Electronics.
[35] W. A. Little. Kleemenko cycle coolers : Low cost refrigeration at cryogenic temperatures , 1998 .
[36] K Ueda,et al. Tunable Continuous-Wave Yb:YLF Laser Operation with a Diode-Pumped Chirped-Pulse Amplification System. , 2001, Applied optics.
[37] Bernard Bendow,et al. Theory of the Temperature Derivative of the Refractive Index in Transparent Crystals , 1973 .
[38] T. Fan,et al. Thermal coefficients of the expansion and refractive index in YAG. , 1999, Applied optics.
[39] G. A. Slack,et al. Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions , 1971 .
[40] N. Barnes,et al. Some optical properties of KTP, LiIO/sub 3/, and LiNbO/sub 3/ , 1988 .
[41] Junji Kawanaka,et al. Improved high-field laser characteristics of a diode-pumped Yb:LiYF4 crystal at low temperature. , 2002, Optics express.
[42] M. Murnane,et al. High efficiency, single-stage, 7 kHz, high average power ultrafast laser system , 2001, CLEO 2001.
[43] David C. Brown. Nonlinear thermal and stress effects and scaling behavior of YAG slab amplifiers , 1998 .
[44] Michael Bass,et al. Handbook of optics , 1995 .
[45] L. Deshazer,et al. Evidence of Nd:YAG quantum efficiency dependence on nonequivalent crystal field effects , 1983 .
[46] E. D. Melnik,et al. Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. , 2004, Optics letters.
[47] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[48] David C. Brown. Nonlinear thermal distortion in YAG rod amplifiers , 1998 .
[49] Adolf Giesen. Results and scaling laws of thin-disk lasers , 2004, SPIE LASE.
[50] Albert Feldman,et al. Optical materials characterization , 1975 .