The promise of cryogenic solid-state lasers

Cryogenic cooling of solid-state lasers has a number of important benefits, including the near vanishing of optical distortion in high average power lasers, as well as enhanced spectroscopic and lasing properties. These benefits are just beginning to be exploited to produce compact high average power lasers whose output is scalable, near diffraction limited, and whose efficiencies will exceed those of modern bulk solid-state lasers. In this paper, we review the history of cryogenically cooled solid-state lasers and the benefits of cryogenic cooling, including optical and laser properties and thermal and thermooptic properties; examine cryogenic amplifiers and cooling methods, including a straight-through propagation thin-disk configuration that does not perform well at room temperature, and summarize the experimental performance demonstrated to date. As a specific example, we examine the spectroscopic and lasing properties of Yb:YAG and show that compact high efficiency and high average power, near diffraction limited lasers (>100 kW) can be realized in the near future using presently available technology.

[1]  B. Bendow,et al.  Temperature dependence of the refractive index of alkaline earth fluorides. , 1976, Applied optics.

[2]  Fuxi Gan,et al.  Dependence of the Yb 3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet , 2003 .

[3]  M M Murnane,et al.  0.2-TW laser system at 1kHz. , 1997, Optics letters.

[4]  David C. Brown,et al.  Methods For Scaling High Average Power Laser Performance , 1986, Photonics West - Lasers and Applications in Science and Engineering.

[5]  T. Fan,et al.  Thermal Coefficients of the Optical Path Length and Refractive Index in YAG. , 1998, Applied optics.

[6]  T. Fan Heat generation in Nd:YAG and Yb:YAG , 1993 .

[7]  Walter Koechner,et al.  Solid-State Laser Engineering , 1976 .

[8]  David C. Brown Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers , 1997 .

[9]  Gorachand Ghosh,et al.  Handbook of thermo-optic coefficients of optical materials with applications , 1998 .

[10]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[11]  Robert L. Byer,et al.  Modeling and CW operation of a quasi-three-level 946 nm Nd: YAG laser , 1987 .

[12]  D. Brown,et al.  Active-mirror amplifiers: Progress and prospects , 1981, IEEE Journal of Quantum Electronics.

[13]  L. G. DeShazer,et al.  Nd:YAG quantum efficiency and related radiative properties , 1989 .

[14]  K. K. Lee,et al.  High average power active-mirror amplifier. , 1986, Applied optics.

[15]  P. Moulton Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .

[16]  G Ghosh Thermo-optic coefficients of LiNbO(3), LiIO(3), and LiTaO(3) nonlinear crystals. , 1994, Optics letters.

[17]  D. Nikogosyan,et al.  Properties of Optical and Laser-Related Materials: A Handbook , 1997 .

[18]  T. Kasamatsu,et al.  Temperature dependence and optimization of 970-nm diode-pumped Yb:YAG and Yb:LuAG lasers. , 1999, Applied optics.

[19]  D. Wood Energy Levels of Yb3+ in Garnets , 1963 .

[20]  R. K. Kirby,et al.  Thermophysical Properties of Matter - the TPRC Data Series. Volume 13. Thermal Expansion - Nonmetallic Solids , 1977 .

[21]  M M Murnane,et al.  High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system. , 2001, Optics letters.

[22]  A. Kaminskiĭ,et al.  Crystalline Lasers: Physical Processes and Operating Schemes , 1996 .

[23]  P. A. Schulz,et al.  Liquid-nitrogen-cooled Ti:Al/sub 2/O/sub 3/ laser , 1991 .

[24]  B. Pazol,et al.  Index of refraction measurement on sapphire at low temperatures and visible wavelengths. , 1993, Applied optics.

[25]  D. Wood,et al.  Spectrum of Yb3+ in Yttrium Gallium Garnet , 1960 .

[26]  Rustin L. Laycock,et al.  Integrated diamond sapphire laser. , 2003, Optics express.

[27]  Tso Yee Fan,et al.  Cooled Yb:YAG for high-power solid state lasers , 1998, Defense, Security, and Sensing.

[28]  David C. Brown,et al.  Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers , 2001 .

[29]  R. Cone,et al.  Yb:YAG absorption at ambient and cryogenic temperatures , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  T. Fan,et al.  Room-temperature diode-pumped Yb:YAG laser. , 1991, Optics letters.

[31]  Stephen A. Payne,et al.  Laser demonstration of Yb/sub 3/Al/sub 5/O/sub 12/ (YbAG) and materials properties of highly doped Yb:YAG , 2001 .

[32]  Tso Yee Fan,et al.  165-W cryogenically cooled Yb:YAG laser. , 2004, Optics letters.

[33]  David S. Sumida,et al.  Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers , 1997 .

[34]  T. Graf,et al.  Reduction of thermally induced lenses in Nd:YAG with low temperatures , 2004, IEEE Journal of Quantum Electronics.

[35]  W. A. Little Kleemenko cycle coolers : Low cost refrigeration at cryogenic temperatures , 1998 .

[36]  K Ueda,et al.  Tunable Continuous-Wave Yb:YLF Laser Operation with a Diode-Pumped Chirped-Pulse Amplification System. , 2001, Applied optics.

[37]  Bernard Bendow,et al.  Theory of the Temperature Derivative of the Refractive Index in Transparent Crystals , 1973 .

[38]  T. Fan,et al.  Thermal coefficients of the expansion and refractive index in YAG. , 1999, Applied optics.

[39]  G. A. Slack,et al.  Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions , 1971 .

[40]  N. Barnes,et al.  Some optical properties of KTP, LiIO/sub 3/, and LiNbO/sub 3/ , 1988 .

[41]  Junji Kawanaka,et al.  Improved high-field laser characteristics of a diode-pumped Yb:LiYF4 crystal at low temperature. , 2002, Optics express.

[42]  M. Murnane,et al.  High efficiency, single-stage, 7 kHz, high average power ultrafast laser system , 2001, CLEO 2001.

[43]  David C. Brown Nonlinear thermal and stress effects and scaling behavior of YAG slab amplifiers , 1998 .

[44]  Michael Bass,et al.  Handbook of optics , 1995 .

[45]  L. Deshazer,et al.  Evidence of Nd:YAG quantum efficiency dependence on nonequivalent crystal field effects , 1983 .

[46]  E. D. Melnik,et al.  Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. , 2004, Optics letters.

[47]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[48]  David C. Brown Nonlinear thermal distortion in YAG rod amplifiers , 1998 .

[49]  Adolf Giesen Results and scaling laws of thin-disk lasers , 2004, SPIE LASE.

[50]  Albert Feldman,et al.  Optical materials characterization , 1975 .