Physics-Based Segmentation of Complex Objects Using Multiple Hypotheses of Image Formation

We present a general framework for the segmentation of complex scenes using multiple physical hypotheses of image formation. These hypotheses specify broad classes for the shape, illumination, and material properties of simple image regions. Through analysis, merging, and filtering of hypotheses the framework generates a ranked list of segmentations. We have implemented an algorithm based upon this framework and show example segmentations of scenes containing multicolored piece-wise uniform dielectric objects. By using this new approach we can intelligently segment scenes with objects of greater complexity than previous physics-based algorithms. The results show that by using general physical models we can obtain segmentations that correspond more closely to objects in a scene than segmentations found using only color.

[1]  Ruzena Bajcsy,et al.  Segmentation as the search for the best description of the image in terms of primitives , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[2]  A. P. Petrov,et al.  Properties of color images of surfaces under multiple illuminants , 1994 .

[3]  Glenn Healey,et al.  Using color for geometry-insensitive segmentation , 1989 .

[4]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[5]  A. Pentland Finding the illuminant direction , 1982 .

[6]  Donald P. Greenberg,et al.  The hemi-cube: a radiosity solution for complex environments , 1985, SIGGRAPH.

[7]  S. Zucker,et al.  A ray-based computational model of light sources and illumination , 1995, Proceedings of the Workshop on Physics-Based Modeling in Computer Vision.

[8]  Mubarak Shah,et al.  Analysis of shape from shading techniques , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[9]  M H Brill,et al.  Image segmentation by object color: a unifying framework and connection to color constancy. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[10]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[11]  B. Wandell,et al.  Standard surface-reflectance model and illuminant estimation , 1989 .

[12]  E. Adelson,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[13]  Jerome A. Feldman,et al.  A Semantics-Based Decision Theory Region Analyser , 1973, IJCAI.

[14]  D. L. Macadam,et al.  The measurement of appearance , 1975 .

[15]  M. Zigler,et al.  Color in business, science and industry. , 1953 .

[16]  Claude L. Fennema,et al.  Scene Analysis Using Regions , 1970, Artif. Intell..

[17]  Alex Pentland,et al.  Segmentation by minimal description , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[18]  D. B. Judd,et al.  Color in Business, Science, and Industry , 1953 .

[19]  Reg G. Willson Modeling and calibration of automated zoom lenses , 1994, Other Conferences.

[20]  Alex Pentland,et al.  A simple algorithm for shape from shading , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  C. Radke International Conference on Computer Design , 2022 .

[22]  Steven M. LaValle,et al.  A Bayesian Segmentation Methodology for Parametric Image Models , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Rama Chellappa,et al.  Estimation of Illuminant Direction, Albedo, and Shape from Shading , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Steven W. Zucker,et al.  Shading Flows and Scenel Bundles: A New Approach to Shape from Shading , 1992, ECCV.

[25]  D. Spencer,et al.  The photic field , 1981 .

[26]  H C Lee,et al.  Method for computing the scene-illuminant chromaticity from specular highlights. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[27]  Lawrence L. Lapin Probability and Statistics for Modern Engineering , 1983 .

[28]  H. Barrow,et al.  Scene modeling: a structural basis for image description , 1980 .

[29]  Takeo Kanade,et al.  Surface Reflection: Physical and Geometrical Perspectives , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Michael J. Brooks,et al.  Shape and Source from Shading , 1985, IJCAI.

[31]  Steven A. Shafer,et al.  A framework for segmentation using physical models of image formation , 1993, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[32]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[33]  Rama Chellappa,et al.  Estimation of illuminant direction, albedo, and shape from shading , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Hsien-Che Lee,et al.  Modeling Light Reflection for Computer Color Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[36]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[37]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[38]  I. G. Priest The Optical Society of America , 1962, Nature.

[39]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[40]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[41]  Glenn Healey,et al.  Results using random field models for the segmentation of color images of natural scenes , 1995, Proceedings of IEEE International Conference on Computer Vision.

[42]  R. Bajcsy,et al.  Color image segmentation with detection of highlights and local illumination induced by inter-reflections , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[43]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .

[44]  Lawrence B. Wolff Diffuse reflectance model for dielectric surfaces , 1993, Other Conferences.

[45]  M. Carter Computer graphics: Principles and practice , 1997 .